Skip to main content
Log in

Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.

    Article  Google Scholar 

  2. Lipton RB, Stewart WF, Scher AI. Epidemiology and economic impact of migraine. Curr Med Res Opin. 2001;17(Suppl 1):s4–12.

    Article  PubMed  Google Scholar 

  3. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343–9.

    Article  CAS  PubMed  Google Scholar 

  4. Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  5. Headache Classfication Committee of the International Headache Society. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.

  6. Buse DC, Scher AI, Dodick DW, Reed ML, Fanning KM, Manack Adams A, et al. Impact of migraine on the family: perspectives of people with migraine and their spouse/domestic partner in the CaMEO Study. Mayo Clin Proc. 2016;pii: S0025-6196(16)00126-9.

  7. Lanteri-Minet M, Duru G, Mudge M, Cottrell S. Quality of life impairment, disability and economic burden associated with chronic daily headache, focusing on chronic migraine with or without medication overuse: a systematic review. Cephalalgia. 2011;31(7):837–50.

    Article  PubMed  Google Scholar 

  8. Mitsikostas DD, Thomas AM. Comorbidity of headache and depressive disorders. Cephalalgia. 1999;19(4):211–7.

    Article  CAS  PubMed  Google Scholar 

  9. Buse DC, Manack A, Serrano D, Turkel C, Lipton RB. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry. 2010;81(4):428–32.

    Article  CAS  PubMed  Google Scholar 

  10. Silberstein SD, Holland S, Freitag F, Dodick DW, Argoff C, Ashman E, et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silberstein SD, Winner PK, Chmiel JJ. Migraine preventive medication reduces resource utilization. Headache. 2003;43(3):171–8.

    Article  PubMed  Google Scholar 

  12. Loder E, Burch R, Rizzoli P. The 2012 AHS/AAN guidelines for prevention of episodic migraine: a summary and comparison with other recent clinical practice guidelines. Headache. 2012;52(6):930–45.

    Article  PubMed  Google Scholar 

  13. Shamliyan TA, Choi JY, Ramakrishnan R, Miller JB, Wang SY, Taylor FR, et al. Preventive pharmacologic treatments for episodic migraine in adults. J Gen Intern Med. 2013;28(9):1225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9(3):285–98.

    Article  PubMed  Google Scholar 

  15. Evans RW, Linde M. Expert opinion: adherence to prophylactic migraine medication. Headache. 2009;49(7):1054–8.

    Article  PubMed  Google Scholar 

  16. Gracia-Naya M, Santos-Lasaosa S, Rios-Gomez C, Sanchez-Valiente S, Garcia-Gomara MJ, Latorre-Jimenez AM, et al. Predisposing factors affecting drop-out rates in preventive treatment in a series of patients with migraine. Rev Neurol. 2011;53(4):201–8.

    PubMed  Google Scholar 

  17. Hepp Z, Dodick DW, Varon SF, Gillard P, Hansen RN, Devine EB. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia. 2015;35(6):478–88.

    Article  PubMed  Google Scholar 

  18. Goadsby PJ. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain. 2016;139(Pt 10):2571–7.

    Article  PubMed  Google Scholar 

  19. Giffin NJ, Ruggiero L, Lipton RB, Silberstein SD, Tvedskov JF, Olesen J, et al. Premonitory symptoms in migraine: an electronic diary study. Neurology. 2003;60(6):935–40.

    Article  CAS  PubMed  Google Scholar 

  20. Kelman L. The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs. Headache. 2004;44(9):865–72.

    Article  PubMed  Google Scholar 

  21. Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87(3):309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia. 1992;12(4):221–8 (discussion 186).

  23. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA, de Koning PJ, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12(5):454–61.

    Article  PubMed  Google Scholar 

  24. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97(2):553–622.

    Article  PubMed  Google Scholar 

  25. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience. 2009;161(2):327–41.

    Article  CAS  PubMed  Google Scholar 

  26. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charles A. Migraine: a brain state. Curr Opin Neurol. 2013;26(3):235–9.

    Article  PubMed  Google Scholar 

  28. Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol. 2015;14(1):65–80.

    Article  CAS  PubMed  Google Scholar 

  29. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.

    Article  CAS  PubMed  Google Scholar 

  30. Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol. 2010;6(10):573–82.

    Article  CAS  PubMed  Google Scholar 

  31. Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia. 2002;22(2):112–6.

    Article  CAS  PubMed  Google Scholar 

  32. Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat. 1997;190(Pt 3):367–75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoskin KL, Zagami AS, Goadsby PJ. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat. 1999;194(Pt 4):579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain. 2002;125(Pt 7):1496–509.

    Article  PubMed  Google Scholar 

  35. Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 1990;534(1–2):149–69.

    CAS  PubMed  Google Scholar 

  36. May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab. 1999;19(2):115–27.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki N, Hardebo JE, Owman C. Origins and pathways of cerebrovascular nerves storing substance P and calcitonin gene-related peptide in rat. Neuroscience. 1989;31(2):427–38.

    Article  CAS  PubMed  Google Scholar 

  38. Ivanusic JJ, Kwok MM, Ahn AH, Jennings EA. 5-HT(1D) receptor immunoreactivity in the sphenopalatine ganglion: implications for the efficacy of triptans in the treatment of autonomic signs associated with cluster headache. Headache. 2011;51(3):392–402.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1(12):1036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache. 2009;49(8):1131–43.

    Article  PubMed  Google Scholar 

  41. Akerman S, Holland PR, Summ O, Lasalandra MP, Goadsby PJ. A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization. Brain. 2012;135(Pt 12):3664–75.

    Article  PubMed  Google Scholar 

  42. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.

    Article  CAS  PubMed  Google Scholar 

  43. Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet. 2001;357(9261):1016–7.

    Article  CAS  PubMed  Google Scholar 

  44. Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache. 1987;27(8):416–20.

    Article  CAS  PubMed  Google Scholar 

  45. Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31(6):1937–43.

    Article  CAS  PubMed  Google Scholar 

  46. Borsook D, Burstein R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia. 2012;32(11):803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology. 2015;84(21):2124–31.

    Article  PubMed  CAS  Google Scholar 

  48. Goadsby PJ, Hoskin KL. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain. 1996;67(2–3):355–9.

    Article  CAS  PubMed  Google Scholar 

  49. Goadsby PJ. The pharmacology of headache. Prog Neurobiol. 2000;62(5):509–25.

    Article  CAS  PubMed  Google Scholar 

  50. Goadsby PJ, Gundlach AL. Localization of 3H-dihydroergotamine-binding sites in the cat central nervous system: relevance to migraine. Ann Neurol. 1991;29(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  51. Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain. 1996;119(Pt 1):249–56.

    Article  PubMed  Google Scholar 

  52. Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia. 2015;35(14):1298–307.

    Article  CAS  PubMed  Google Scholar 

  53. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Settle M. The hypothalamus. Neonatal Netw. 2000;19(6):9–14.

    Article  CAS  PubMed  Google Scholar 

  55. Kagan R, Kainz V, Burstein R, Noseda R. Hypothalamic and basal ganglia projections to the posterior thalamus: possible role in modulation of migraine headache and photophobia. Neuroscience. 2013;248:359–68.

    Article  CAS  PubMed  Google Scholar 

  56. Abdallah K, Artola A, Monconduit L, Dallel R, Luccarini P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One. 2013;8(8):e73022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci. 2013;33(20):8827–40.

    Article  CAS  PubMed  Google Scholar 

  58. Moulton EA, Becerra L, Johnson A, Burstein R, Borsook D. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One. 2014;9(4):e95508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137(Pt 1):232–41.

    Article  PubMed  Google Scholar 

  60. Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain. 2004;109(3):367–78.

    Article  CAS  PubMed  Google Scholar 

  61. Charbit AR, Akerman S, Holland PR, Goadsby PJ. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci. 2009;29(40):12532–41.

    Article  CAS  PubMed  Google Scholar 

  62. Hosoya Y, Sugiura Y, Ito R, Kohno K. Descending projections from the hypothalamic paraventricular nucleus to the A5 area, including the superior salivatory nucleus, in the rat. Exp Brain Res. 1990;82(3):513–8.

    Article  CAS  PubMed  Google Scholar 

  63. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–26.

    PubMed  Google Scholar 

  64. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139(Pt 7):1987–93.

    Article  PubMed  Google Scholar 

  65. Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci. 2011;31(40):14204–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Noseda R, Kainz V, Borsook D, Burstein R. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS ONE. 2014;9(8):e103929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shields KG, Goadsby PJ. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain. 2005;128(Pt 1):86–97.

    PubMed  Google Scholar 

  70. Tepe N, Filiz A, Dilekoz E, Akcali D, Sara Y, Charles A, et al. The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci. 2015;41(1):120–8.

    Article  PubMed  Google Scholar 

  71. Andreou AP, Shields KG, Goadsby PJ. GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis. 2010;37(2):314–23.

    Article  CAS  PubMed  Google Scholar 

  72. Summ O, Charbit AR, Andreou AP, Goadsby PJ. Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain. 2010;133(9):2540–8.

    Article  PubMed  Google Scholar 

  73. Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain. 2016;139(Pt 7):2002–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Aurora SK, al-Sayeed F, Welch KM. The cortical silent period is shortened in migraine with aura. Cephalalgia. 1999;19(8):708–12.

  75. Aurora SK, Cao Y, Bowyer SM, Welch KM. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache. 1999;39(7):469–76.

    Article  CAS  PubMed  Google Scholar 

  76. Lang E, Kaltenhauser M, Neundorfer B, Seidler S. Hyperexcitability of the primary somatosensory cortex in migraine—a magnetoencephalographic study. Brain. 2004;127(Pt 11):2459–69.

    Article  PubMed  Google Scholar 

  77. Coppola G, Di Renzo A, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, et al. O028. Thalamo-cortical network changes during the migraine cycle: insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain. 2015;16(Suppl 1):A52.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sprenger T, Borsook D. Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol. 2012;25(3):252–62.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chong CD, Schwedt TJ, Dodick DW. Migraine: what imaging reveals. Curr Neurol Neurosci Rep. 2016;16(7):64.

    Article  PubMed  Google Scholar 

  80. Noseda R, Constandil L, Bourgeais L, Chalus M, Villanueva L. Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci. 2010;30(43):14420–9.

    Article  CAS  PubMed  Google Scholar 

  81. Leao AAP. Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7(6):391–6.

    Article  Google Scholar 

  82. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7(6):359–90.

    Article  Google Scholar 

  83. Bhaskar S, Saeidi K, Borhani P, Amiri H. Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci. 2013;38(11):3540–51.

    Article  PubMed  Google Scholar 

  84. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98(8):4687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69(5):855–65.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gasparini CF, Smith RA, Griffiths LR. Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci. 2016;367:258–68.

    Article  CAS  PubMed  Google Scholar 

  88. Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298(5871):240–4.

    Article  CAS  PubMed  Google Scholar 

  91. Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985;229(4718):1094–7.

    Article  CAS  PubMed  Google Scholar 

  92. Bovenberg RA, van de Meerendonk WP, Baas PD, Steenbergh PH, Lips CJ, Jansz HS. Model for alternative RNA processing in human calcitonin gene expression. Nucleic Acids Res. 1986;14(22):8785–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol. 1988;23(2):193–6.

    Article  CAS  PubMed  Google Scholar 

  94. Edvinsson L. The journey to establish CGRP as a migraine target: a retrospective view. Headache. 2015;55(9):1249–55.

    Article  PubMed  Google Scholar 

  95. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  96. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  97. Cernuda-Morollon E, Martinez-Camblor P, Ramon C, Larrosa D, Serrano-Pertierra E, Pascual J. CGRP and VIP levels as predictors of efficacy of onabotulinumtoxin type A in chronic migraine. Headache. 2014;54(6):987–95.

    Article  PubMed  Google Scholar 

  98. Cady R, Turner I, Dexter K, Beach ME, Cady R, Durham P. An exploratory study of salivary calcitonin gene-related peptide levels relative to acute interventions and preventative treatment with onabotulinumtoxinA in chronic migraine. Headache. 2014;54(2):269–77.

    Article  PubMed  Google Scholar 

  99. Hansen JM, Hauge AW, Olesen J, Ashina M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;30(10):1179–86.

    Article  PubMed  Google Scholar 

  100. Guo S, Vollesen AL, Olesen J, Ashina M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain. 2016;157(12):2773–81.

    Article  CAS  PubMed  Google Scholar 

  101. Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol. 2008;507(3):1277–99.

    Article  CAS  PubMed  Google Scholar 

  102. Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience. 2010;169(2):683–96.

    Article  CAS  PubMed  Google Scholar 

  103. VanRossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav R. 1997;21(5):649–78.

    Article  CAS  Google Scholar 

  104. Uddman R, Tajtj J, Cardell LO, Sundler F, Uddman E, Edvinsson L. Endothelin ETA and ETB receptor expression in the human trigeminal ganglion. Neuroendocrinol Lett. 2006;27(3):345–9.

    CAS  PubMed  Google Scholar 

  105. Walker CS, Hay DL, Fitzpatrick SM, Cooper GJ, Loomes KM. alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides. 2014;58:14–9.

    Article  CAS  PubMed  Google Scholar 

  106. Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab. 1987;7(6):720–8.

    Article  CAS  PubMed  Google Scholar 

  107. Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med. 2007;13(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  108. Unger JW, Lange W. Immunohistochemical mapping of neurophysins and calcitonin gene-related peptide in the human brainstem and cervical spinal cord. J Chem Neuroanat. 1991;4(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  109. Just S, Arndt K, Doods H. The role of CGRP and nicotinic receptors in centrally evoked facial blood flow changes. Neurosci Lett. 2005;381(1–2):120–4.

    Article  CAS  PubMed  Google Scholar 

  110. Bigal ME, Ferrari M, Silberstein SD, Lipton RB, Goadsby PJ. Migraine in the triptan era: lessons from epidemiology, pathophysiology, and clinical science. Headache. 2009;49(Suppl 1):S21–33.

    Article  PubMed  Google Scholar 

  111. Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C, et al. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience. 2016;328:165–83.

    Article  CAS  PubMed  Google Scholar 

  112. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54(2):233–46.

    Article  CAS  PubMed  Google Scholar 

  113. Johansson E, Hansen JL, Hansen AM, Shaw AC, Becker P, Schaffer L, et al. Type II turn of receptor-bound salmon calcitonin revealed by X-ray crystallography. J Biol Chem. 2016;291(26):13689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem. 2000;275(40):31438–43.

    Article  CAS  PubMed  Google Scholar 

  115. Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004;84(3):903–34.

    Article  CAS  PubMed  Google Scholar 

  116. Crossman DC, Dashwood MR, Brain SD, McEwan J, Pearson JD. Action of calcitonin gene-related peptide upon bovine vascular endothelial and smooth muscle cells grown in isolation and co-culture. Br J Pharmacol. 1990;99(1):71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C. Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett. 1985;58(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  118. Edvinsson L, Gulbenkian S, Barroso CP, Cunha e Sa M, Polak JM, Mortensen A, et al. Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides. 1998;19(7):1213–25.

    Article  CAS  PubMed  Google Scholar 

  119. Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):382–90.

    Article  CAS  PubMed  Google Scholar 

  120. Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings EL, Diener HC, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1091–100.

    Article  CAS  PubMed  Google Scholar 

  121. Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 2014;13(11):1100–7.

    Article  CAS  PubMed  Google Scholar 

  122. Diener HC, Barbanti P, Dahlof C, Reuter U, Habeck J, Podhorna J. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a Phase II study. Cephalalgia. 2011;31(5):573–84.

    Article  PubMed  Google Scholar 

  123. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23.

    Article  CAS  PubMed  Google Scholar 

  124. Iovino M, Feifel U, Yong CL, Wolters JM, Wallenstein G. Safety, tolerability and pharmacokinetics of BIBN 4096 BS, the first selective small molecule calcitonin gene-related peptide receptor antagonist, following single intravenous administration in healthy volunteers. Cephalalgia. 2004;24(8):645–56.

    Article  CAS  PubMed  Google Scholar 

  125. Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol. 2015;80(2):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bigal ME, Walter S. Monoclonal antibodies for migraine: preventing calcitonin gene-related peptide activity. CNS Drugs. 2014;28(5):389–99.

    Article  CAS  PubMed  Google Scholar 

  127. Bell IM. Calcitonin gene-related peptide receptor antagonists: new therapeutic agents for migraine. J Med Chem. 2014;57(19):7838–58.

    Article  CAS  PubMed  Google Scholar 

  128. Connor KM, Aurora SK, Loeys T, Ashina M, Jones C, Giezek H, et al. Long-term tolerability of telcagepant for acute treatment of migraine in a randomized trial. Headache. 2011;51(1):73–84.

    Article  PubMed  Google Scholar 

  129. Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the Phase 1 program. Cephalalgia. 2014;34(7):483–92.

    Article  PubMed  Google Scholar 

  130. Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL, et al. Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther. 2008;324(2):416–21.

    Article  CAS  PubMed  Google Scholar 

  131. Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, et al. A randomised, double-blind, placebo-controlled, phase 2 study to evaluate the efficacy and safety of AMG 334 for the prevention of episodic migraine. Lancet Neurology. 2016;15:382–90.

    Article  CAS  PubMed  Google Scholar 

  132. Dodick DW, Goadsby PJ, Spierings EL, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13(9):885–92.

    Article  CAS  PubMed  Google Scholar 

  133. Sexton PM, McKenzie JS, Mason RT, Moseley JM, Martin TJ, Mendelsohn FA. Localization of binding sites for calcitonin gene-related peptide in rat brain by in vitro autoradiography. Neuroscience. 1986;19(4):1235–45.

    Article  CAS  PubMed  Google Scholar 

  134. Inagaki S, Kito S, Kubota Y, Girgis S, Hillyard CJ, MacIntyre I. Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brains. Brain Res. 1986;374(2):287–98.

    Article  CAS  PubMed  Google Scholar 

  135. Chakravarty P, Suthar TP, Coppock HA, Nicholl CG, Bloom SR, Legon S, et al. CGRP and adrenomedullin binding correlates with transcript levels for calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) in rat tissues. Br J Pharmacol. 2000;130(1):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hay DL, Poyner DR, Quirion R. International Union of P. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor. Pharmacol Rev. 2008;60(2):143–5.

    Article  PubMed  Google Scholar 

  137. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–9.

    Article  CAS  PubMed  Google Scholar 

  138. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  139. Muff R, Buhlmann N, Fischer JA, Born W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology. 1999;140(6):2924–7.

    Article  CAS  PubMed  Google Scholar 

  140. Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L, et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol. 2015;2(6):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. MaassenVanDenBrink A, Meijer J, Villalon CM, Ferrari MD. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci. 2016;37(9):779–88.

    Article  CAS  PubMed  Google Scholar 

  142. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10.

    Article  CAS  PubMed  Google Scholar 

  143. Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2014;34(2):114–25.

    Article  PubMed  Google Scholar 

  144. Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22.

    Article  PubMed  Google Scholar 

  145. Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. A Phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98.

    Article  PubMed  Google Scholar 

  146. Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X, et al. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology. 2014;83(11):958–66.

    Article  CAS  PubMed  Google Scholar 

  147. Tso AR, Goadsby PJ. New targets for migraine therapy. Curr Treat Options Neurol. 2014;16(11):318.

    Article  PubMed  Google Scholar 

  148. Petersen KA, Lassen LH, Birk S, Lesko L, Olesen J. BIBN4096BS antagonizes human alpha-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin Pharmacol Ther. 2005;77(3):202–13.

    Article  CAS  PubMed  Google Scholar 

  149. Baumann A. Early development of therapeutic biologics–pharmacokinetics. Curr Drug Metab. 2006;7(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  150. Silberstein S, Lenz R, Xu C. Therapeutic monoclonal antibodies: what headache specialists need to know. Headache. 2015;55(8):1171–82.

    Article  PubMed  Google Scholar 

  151. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    Article  CAS  PubMed  Google Scholar 

  152. Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1081–90.

    Article  CAS  PubMed  Google Scholar 

  153. Felgenhauer K. Protein size and cerebrospinal fluid composition. Klin Wochenschr. 1974;52(24):1158–64.

    Article  CAS  PubMed  Google Scholar 

  154. Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, et al. Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain. 2016;139(Pt 7):1994–2001.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW, et al. Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol. 2017;24(9):1116–24.

    Article  CAS  PubMed  Google Scholar 

  156. Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, et al. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 2017;140(6):1633–42.

    Article  PubMed  Google Scholar 

  157. Lenz R, Dodick D, Goadsby PJ, et al. Prevention of episodic migraine with in AMG 334, a human anticalcitonin gene-related peptide receptor monoclonal antibody: phase 2 study results and 52-week analysis of open-label extension. Neurology. 2016;86 (16 Supplement):S26.002.

  158. Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34.

    Article  CAS  PubMed  Google Scholar 

  159. Cohen JM, Dodick DW, Yang R, Newman LC, Li T, Aycardi E, et al. Fremanezumab as add-on treatment for patients treated with other migraine preventive medicines. Headache. 2017;57(9):1375–84.

    Article  PubMed  Google Scholar 

  160. Bigal ME, Dodick DW, Krymchantowski AV, VanderPluym JH, Tepper SJ, Aycardi E, et al. TEV-48125 for the preventive treatment of chronic migraine: efficacy at early time points. Neurology. 2016;87(1):41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mitsikostas DD, Rapoport AM. New players in the preventive treatment of migraine. BMC Med. 2015;13:279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53(8):1230–44.

    Article  PubMed  Google Scholar 

  163. Descotes J. Immunotoxicity of monoclonal antibodies. MAbs. 2009;1(2):104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Feuerstein G, Willette R, Aiyar N. Clinical perspectives of calcitonin gene related peptide pharmacology. Can J Physiol Pharmacol. 1995;73(7):1070–4.

    Article  CAS  PubMed  Google Scholar 

  165. Bertolotto A. Evaluation of the impact of neutralizing antibodies on IFNbeta response. Clin Chim Acta. 2015;449:31–6.

    Article  CAS  PubMed  Google Scholar 

  166. Rup B, Pallardy M, Sikkema D, Albert T, Allez M, Broet P, et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium. Clin Exp Immunol. 2015;181(3):385–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Goadsby PJ, Reuter U, Hallstrom Y, Broessner G, Bonner JH, Zhang F, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32.

    Article  CAS  PubMed  Google Scholar 

  168. Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377(22):2113–22.

    Article  CAS  PubMed  Google Scholar 

  169. Ashina M, Dodick D, Goadsby PJ, Reuter U, Silberstein S, Zhang F, et al. Erenumab (AMG 334) in episodic migraine: interim analysis of an ongoing open-label study. Neurology. 2017;89(12):1237–43.

    Article  CAS  PubMed  Google Scholar 

  170. Goadsby PJ, Paemeleire K, Broessner G, Brandes J, Klatt J, Zhang F et al. Efficacy of erenumab in subsjects with episodic migraine with prior preventive treatment failure(s). Cephalalgia. 2017;37(IS):13–4.

  171. Depre C, Antalik L, Starling A, Koren M, Eisele O, Kubo Y et al. A randomized, double-blind, placebocontrolled study to evaluate the effect of erenumab on exercise time during a treadmill test in patients with stable angina. Cephalalgia. 2017;37(IS):340.

  172. Karsan N, Goadsby PJ. CGRP mechanism antagonists and migraine management. Curr Neurol Neurosci Rep. 2015;15(5):25.

    Article  PubMed  CAS  Google Scholar 

  173. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170(2):643–8.

    Article  CAS  PubMed  Google Scholar 

  174. Uddman R, Hara H, Edvinsson L. Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1989;26(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  175. Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther. 1993;267(2):690–6.

    CAS  PubMed  Google Scholar 

  176. Edvinsson L, Elsas T, Suzuki N, Shimizu T, Lee TJ. Origin and Co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001;53(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  177. Laburthe M, Couvineau A, Marie JC. VPAC receptors for VIP and PACAP. Recept Chann. 2002;8(3–4):137–53.

    Article  CAS  Google Scholar 

  178. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166(1):4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chan KY, Baun M, de Vries R, van den Bogaerdt AJ, Dirven CM, Danser AH, et al. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia. 2011;31(2):181–9.

    Article  PubMed  Google Scholar 

  180. Csati A, Tajti J, Kuris A, Tuka B, Edvinsson L, Warfvinge K. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion. Neuroscience. 2012;202:158–68.

    Article  CAS  PubMed  Google Scholar 

  181. Ingram SL, Williams JT. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol. 1996;492(Pt 1):97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Levy D, Strassman AM. Distinct sensitizing effects of the cAMP-PKA second messenger cascade on rat dural mechanonociceptors. J Physiol. 2002;538(Pt 2):483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jansen-Olesen I, Baun M, Amrutkar DV. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC 1 receptor. Neuropeptides. 2014;48(2):53–64.

  184. Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137(Pt 3):779–94.

    Article  PubMed  Google Scholar 

  185. Fahrenkrug J. PACAP—a multifacetted neuropeptide. Chronobiol Int. 2006;23(1–2):53–61.

    Article  CAS  PubMed  Google Scholar 

  186. Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics. 2010;7(2):191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci Transl Med. 2015;7(308):308ra157.

  188. Cernuda-Morollon E, Riesco N, Martinez-Camblor P, Serrano-Pertierra E, Garcia-Cabo C, Pascual J. No change in interictal PACAP levels in peripheral blood in women with chronic migraine. Headache. 2016;56(9):1448–54.

    Article  PubMed  Google Scholar 

  189. Vollesen ALH, Ashina M. PACAP38: emerging drug target in migraine and cluster headache. Headache. 2017;57(Suppl 2):56–63.

    Article  PubMed  Google Scholar 

  190. Maleki N, Becerra L, Borsook D. Migraine: maladaptive brain responses to stress. Headache. 2012;52(Suppl 2):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hauge AW, Kirchmann M, Olesen J. Trigger factors in migraine with aura. Cephalalgia. 2010;30(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  192. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004;1032:1–7.

    Article  PubMed  Google Scholar 

  193. Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS J. 2009;11(2):312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res. 2010;1314:44–55.

    Article  CAS  PubMed  Google Scholar 

  195. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci. 2008;28(2):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov. 2012;11(6):462–78.

    Article  CAS  PubMed  Google Scholar 

  197. DePaoli AM, Hurley KM, Yasada K, Reisine T, Bell G. Distribution of kappa opioid receptor mRNA in adult mouse brain: an in situ hybridization histochemistry study. Mol Cell Neurosci. 1994;5(4):327–35.

    Article  CAS  PubMed  Google Scholar 

  198. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46(9):1167–80.

    Article  CAS  PubMed  Google Scholar 

  199. Van’t Veer A CWJ. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacol (Berl) 2013;229:435–52.

  200. Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, et al. Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention. Cephalalgia. 2017;37(8):780–94.

    Article  PubMed  Google Scholar 

  201. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gotter AL, Roecker AJ, Hargreaves R, Coleman PJ, Winrow CJ, Renger JJ. Orexin receptors as therapeutic drug targets. Prog Brain Res. 2012;198:163–88.

    Article  CAS  PubMed  Google Scholar 

  203. Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci. 2006;24(10):2825–33.

    Article  CAS  PubMed  Google Scholar 

  204. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  CAS  PubMed  Google Scholar 

  205. Holland P, Goadsby PJ. The hypothalamic orexinergic system: pain and primary headaches. Headache. 2007;47(6):951–62.

    Article  PubMed  Google Scholar 

  206. Bigal ME, Hargreaves RJ. Why does sleep stop migraine? Curr Pain Headache Rep. 2013;17(10):369.

    Article  PubMed  Google Scholar 

  207. Andress-Rothrock D, King W, Rothrock J. An analysis of migraine triggers in a clinic-based population. Headache. 2010;50(8):1366–70.

    Article  PubMed  Google Scholar 

  208. Holland PR, Akerman S, Goadsby PJ. Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther. 2005;315(3):1380–5.

    Article  CAS  PubMed  Google Scholar 

  209. Hoffmann J, Supronsinchai W, Akerman S, Andreou AP, Winrow CJ, Renger J, et al. Evidence for orexinergic mechanisms in migraine. Neurobiol Dis. 2015;74:137–43.

    Article  CAS  PubMed  Google Scholar 

  210. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(5):1 (page following 696).

  211. Herring WJ, Snyder E, Budd K, Hutzelmann J, Snavely D, Liu K, et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology. 2012;79(23):2265–74.

    Article  CAS  PubMed  Google Scholar 

  212. Hoever P, Dorffner G, Benes H, Penzel T, Danker-Hopfe H, Barbanoj MJ, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chabi F, Champmartin S, Sarraf C, Noguera R. Critical evaluation of three hemodynamic models for the numerical simulation of intra-stent flows. J Biomech. 2015;48(10):1769–76.

    Article  PubMed  Google Scholar 

  214. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29(10):578–86.

    Article  CAS  PubMed  Google Scholar 

  215. Baron A, Voilley N, Lazdunski M, Lingueglia E. Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci. 2008;28(6):1498–508.

    Article  CAS  PubMed  Google Scholar 

  216. Price MP, Snyder PM, Welsh MJ. Cloning and expression of a novel human brain Na+ channel. J Biol Chem. 1996;271(14):7879–82.

    Article  CAS  PubMed  Google Scholar 

  217. Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem. 1996;271(18):10433–6.

    Article  CAS  PubMed  Google Scholar 

  218. Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem. 2004;279(42):43716–24.

    Article  CAS  PubMed  Google Scholar 

  219. Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.

    CAS  PubMed  Google Scholar 

  220. Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.

    CAS  PubMed  Google Scholar 

  221. Lambert GA, Michalicek J. Cortical spreading depression reduces dural blood flow—a possible mechanism for migraine pain? Cephalalgia. 1994;14(6):430–6.

  222. Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10.

    Article  CAS  PubMed  Google Scholar 

  223. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13(12):1483–9.

    Article  CAS  PubMed  Google Scholar 

  224. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.

    Article  CAS  PubMed  Google Scholar 

  225. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24(8):450–5.

    Article  CAS  PubMed  Google Scholar 

  226. Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002;82(4):981–1011.

    Article  CAS  PubMed  Google Scholar 

  227. Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21(5):570–9.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology. 2004;46(3):404–11.

    Article  CAS  PubMed  Google Scholar 

  230. Rolan P, Hutchinson M, Johnson K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother. 2009;10(17):2897–904.

    Article  CAS  PubMed  Google Scholar 

  231. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23(2):240–50.

    Article  CAS  PubMed  Google Scholar 

  232. Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE, et al. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache. 2007;47(7):1008–23.

  233. Kraig RP, Mitchell HM, Christie-Pope B, Kunkler PE, White DM, Tang YP, et al. TNF-alpha and microglial hormetic involvement in neurological health & migraine. Dose Response. 2010;8(4):389–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bartley J. Could glial activation be a factor in migraine? Med Hypothes. 2009;72(3):255–7.

    Article  CAS  Google Scholar 

  235. Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003;306(2):624–30.

    Article  CAS  PubMed  Google Scholar 

  236. Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res. 1999;829(1–2):209–21.

    Article  CAS  PubMed  Google Scholar 

  237. Ledeboer A, Liu T, Shumilla JA, Mahoney JH, Vijay S, Gross MI, et al. The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain. Neuron Glia Biol. 2006;2(4):279–91.

    Article  PubMed  Google Scholar 

  238. Rolan P, Gibbons JA, He L, Chang E, Jones D, Gross MI, et al. Ibudilast in healthy volunteers: safety, tolerability and pharmacokinetics with single and multiple doses. Br J Clin Pharmacol. 2008;66(6):792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74(13):1033–40.

    Article  CAS  PubMed  Google Scholar 

  240. Kwok YH, Swift JE, Gazerani P, Rolan P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J Pain Res. 2016;9:899–907.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Johnson JL, Kwok YH, Sumracki NM, Swift JE, Hutchinson MR, Johnson K, et al. Glial attenuation with ibudilast in the treatment of medication overuse headache: a double-blind, randomized, placebo-controlled pilot trial of efficacy and safety. Headache. 2015;55(9):1192–208.

    Article  PubMed  Google Scholar 

  242. Kuwabara Y, Takeda S, Mizuno M, Sakamoto S. Oxytocin levels in maternal and fetal plasma, amniotic fluid, and neonatal plasma and urine. Arch Gynecol Obstet. 1987;241(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  243. Hoshiyama E, Tatsumoto M, Iwanami H, Saisu A, Watanabe H, Inaba N, et al. Postpartum migraines: a long-term prospective study. Intern Med. 2012;51(22):3119–23.

    Article  PubMed  Google Scholar 

  244. Grewen KM, Davenport RE, Light KC. An investigation of plasma and salivary oxytocin responses in breast- and formula-feeding mothers of infants. Psychophysiology. 2010;47(4):625–32.

    PubMed  PubMed Central  Google Scholar 

  245. Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM. Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab. 1987;64(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  246. Evans RW, Couch R. Orgasm and migraine. Headache. 2001;41(5):512–4.

    Article  CAS  PubMed  Google Scholar 

  247. Phillips WJ, Ostrovsky O, Galli RL, Dickey S. Relief of acute migraine headache with intravenous oxytocin: report of two cases. J Pain Palliat Care Pharmacother. 2006;20(3):25–8.

    PubMed  Google Scholar 

  248. Tzabazis A, Kori S, Mechanic J, Miller J, Pascual C, Manering N, et al. Oxytocin and migraine headache. Headache. 2017;57(Suppl 2):64–75.

    Article  PubMed  Google Scholar 

  249. Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, et al. Oxytocin receptor: expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia. 2016;36(10):943–50.

    Article  PubMed  Google Scholar 

  250. De Col R, Koulchitsky SV, Messlinger KB. Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. NeuroReport. 2003;14(2):229–32.

    Article  PubMed  Google Scholar 

  251. Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682(1–2):167–81.

    Article  CAS  PubMed  Google Scholar 

  252. Shimomura T, Murakami F, Kotani K, Ikawa S, Kono S. Platelet nitric oxide metabolites in migraine. Cephalalgia. 1999;19(4):218–22.

    Article  CAS  PubMed  Google Scholar 

  253. Taffi R, Vignini A, Lanciotti C, Luconi R, Nanetti L, Mazzanti L, et al. Platelet membrane fluidity and peroxynitrite levels in migraine patients during headache-free periods. Cephalalgia. 2005;25(5):353–8.

    Article  CAS  PubMed  Google Scholar 

  254. Hoivik HO, Laurijssens BE, Harnisch LO, Twomey CK, Dixon RM, Kirkham AJ, et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia. 2010;30(12):1458–67.

    Article  PubMed  Google Scholar 

  255. Andreou AP, Goadsby PJ. Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009;18(6):789–803.

    Article  CAS  PubMed  Google Scholar 

  256. Ramadan NM. The link between glutamate and migraine. CNS Spectr. 2003;8(6):446–9.

    Article  PubMed  Google Scholar 

  257. Waung MW, Akerman S, Wakefield M, Keywood C, Goadsby PJ. Metabotropic glutamate receptor 5: a target for migraine therapy. Ann Clin Transl Neurol. 2016;3(8):560–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Huang L, Bocek M, Jordan JK, Sheehan AH. Memantine for the prevention of primary headache disorders. Ann Pharmacother. 2014;48(11):1507–11.

    Article  CAS  PubMed  Google Scholar 

  259. Noruzzadeh R, Modabbernia A, Aghamollaii V, Ghaffarpour M, Harirchian MH, Salahi S, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache. 2016;56(1):95–103.

    Article  PubMed  Google Scholar 

  260. Barbanti P, Egeo G. Pharmacological trials in migraine: it’s time to reappraise where the headache is and what the pain is like. Headache. 2015;55(3):439–41.

    Article  PubMed  Google Scholar 

  261. Barbanti P, Fabbrini G, Vanacore N, Pesare M, Buzzi MG. Sumatriptan in migraine with unilateral cranial autonomic symptoms: an open study. Headache. 2003;43(4):400–3.

    Article  PubMed  Google Scholar 

  262. Barbanti P, Fofi L, Dall’Armi V, Aurilia C, Egeo G, Vanacore N, et al. Rizatriptan in migraineurs with unilateral cranial autonomic symptoms: a double-blind trial. J Headache Pain. 2012;13(5):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Jakubowski M, McAllister PJ, Bajwa ZH, Ward TN, Smith P, Burstein R. Exploding vs imploding headache in migraine prophylaxis with Botulinum Toxin A. Pain. 2006;125(3):286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Sandrini G, Perrotta A, Tassorelli C, Torelli P, Brighina F, Sances G, et al. Botulinum toxin type-A in the prophylactic treatment of medication-overuse headache: a multicenter, double-blind, randomized, placebo-controlled, parallel group study. J Headache Pain. 2011;12(4):427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Cernuda-Morollon E, Ramon C, Martinez-Camblor P, Serrano-Pertierra E, Larrosa D, Pascual J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain. 2015;156(5):820–4.

    Article  CAS  PubMed  Google Scholar 

  266. Skljarevski V, Oakes TM, Zhang Q, Ferguson MB, Martinez J, Camporeale A, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol. 2017.

  267. Stauffer VL, Zhang Q, Skljarevski V, Millen B, Yang J, Selzler KJ, et al. Phase 3 study (EVOLVE-1) of galcanezumab in episodic migraine. Headache. 2017;57(8):1336.

    Article  Google Scholar 

  268. Skljarevski V, Zhang Q, Detke HC, Millen B, Yang J, Selzler KJ. Phase 3 study (EVOLVE-2) of galcanezumab in episodic migraine. Headache. 2017;57:1312.

    Google Scholar 

  269. Detke HC, Wang S, Skljarevski V, Ahl J, Millen B, Aurora SK, et al. Galcanezumab in patients with chronic migraine: results from the 3-month double-blind treatment phase of the REGAIN study. Headache. 2017;57:1336–7.

    Google Scholar 

  270. Dodick D, Ashina M, Kudrow D, Lanteri-Minet M, Osipova V, Palmer K, et al. A phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab in migraine prevention: primary results of the ARISE trial. Headache. 2017;57(Suppl3):191–2.

    Google Scholar 

  271. Saper J, Lipton R, Kudrow D, Hirman J, Dodick D, Silberstein S, et al. A Phase 3, Randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of eptinezumab in frequent episodic migraine prevention: primary results of the PROMISE 1 (PRevention Of Migraine via Intravenous eptinezumab Safety and Efficacy 1) Trial. Cephalalgia. 2017;37(IS):337.

  272. Aycardi E, Bigal M, Yeung P, Blankenbiller T, Grozinski-Wolff M, Yang R, et al. Efficacy and safety of 2 dose regimens of subcutaneous administration of fremanezumab (TEV-48125) versus placebo for the preventive treatment of episodic migraine. Cephalalgia. 2017;57 (IS):343.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Goadsby.

Ethics declarations

Funding

The authors certify that no funding has been received for the conduct of this study and/or preparation of this manuscript.

Conflict of interest

Dr D Jonathan Jia Yuan Ong has no conflict of interest to declare. Dr Diana Yi-Ting Wei has no conflict of interest to declare. Professor Peter Goadsby has the following disclosures: grants and personal fees from Allergan, Amgen, and Eli-Lilly and Company; and personal fees from Akita Biomedical, Alder Biopharmaceuticals, Cipla Ltd, Dr Reddy’s Laboratories, eNeura, Electrocore LLC, Novartis, Pfizer Inc, Quest Diagnostics, Scion, Teva Pharmaceuticals, Trigemina Inc., Scion; and personal fees from MedicoLegal work, Journal Watch, Up-to-Date, Massachusetts Medical Society, Oxford University Press; and in addition, Dr. Goadsby has a patent Magnetic stimulation for headache assigned to eNeura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, J.J.Y., Wei, D.YT. & Goadsby, P.J. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 78, 411–437 (2018). https://doi.org/10.1007/s40265-018-0865-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0865-y

Navigation