Skip to main content

Advertisement

Log in

Metabolomics prospect of obesity and metabolic syndrome; a systematic review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Due to growing concerns about the obesity pandemic as a worldwide phenomenon, a global effort has been made for managing it and associated disorders. Accordingly, metabolomics as a promising field of “OMICS” is presented for investigating different molecular pathways in obesity and related disorders through the evaluation of specific metabolites in both animal and human subjects. Herein, the aim of the present study as the first systematic review is to evaluate all available studies about different mechanisms and their biomarkers discovery using metabolomics approaches.

Method

The study was designed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using a comprehensive search strategy we searched in databases including; Web of Science, PubMed, and Scopus using specific keywords. Based on predefined inclusion/exclusion criteria study selection has been conducted considering the type of studies, participant, and outcome measures. Quality assessment was done using CASP (Critical Appraisal Skills Programme) checklist followed by data extraction according to a predefined data extraction sheet.

Results

Among the articles that resulted from electronic search, a total of 74 articles met our inclusion criteria. The most prevalent studied metabolites were amino acids and lipid derivatives and both targeted and non-targeted approaches were applied for metabolomics studies.

Conclusion

This systematic review summarized a wide range of studies regardless of the age, history, language, and type of the study. Further studies are needed to compare the application of emerging methods in the treatment of obesity and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AC-C0 :

Acylcarnitine-C0

AC-C2:

Acylcarnitine-C2

AC-C3:

Acylcarnitine-C3

AC-C4:

Acylcarnitine-C4

AC C4-OH:

Acylcarnitine C4-OH

AC C5:

Acylcarnitine C5

AC C8:

Acylcarnitine C8

AC C8:1:

Acylcarnitine C8:1

AC C10:

Acylcarnitine C10

AC C10:1:

Acylcarnitine C10:1

AC C10:2:

Acylcarnitine C10:2

AC C10:3:

Acylcarnitine C10:3

AC C12:1:

Acylcarnitine C12:1

AC-C14:1:

Acylcarnitine-C14:1

AC-C16:

Acylcarnitine-C16

AC C16-OH/C14-DC:

Acylcarnitine C16-OH/C14-DC

AC C16:1:

Acylcarnitine C16:1

AC-C18:

Acylcarnitine-C18

AC C18:1:

Acylcarnitine C18:1

AC C18:1-OH/C16:1-DC:

Acylcarnitine C18:1-OH/C16:1-DC

ADMA :

Asymmetric dimethylarginine

AHB:

α-hydroxybutyrate

AKB:

2-AMINO-3-KETOBUTYRIC ACID

alpha-AAA:

alpha-amino adipic acid

Arg:

Arginine

Asn:

Asparagine

BHBA:

Beta-Hydroxybutyric acid

C0:

Carnitine (free)

C3:

Propionylcarnitine

C14:1 :

Tetradecadienoylcarnitine (C14:1)

C14:1-OH:

3-Hydroxymyristoleylcarnitine

C14:2 :

Tetradecadienoylcarnitine (C14:2)

C16:0:

Hexadecanoic acid

C16:1:

Palmitoleic acid

C18:0 LPE:

C18:0 lysophosphatidyl-ethanolamine

C18:1 :

Oleic acid

C18:1 LPC:

C18:1 lysophosphatidylcholine

C18:1 LPE:

C18:1 lysophosphatidyl-ethanolamine

C18:2 LPC:

C18:2 lysophosphatidylcholine

C20:3 CE:

C20:3 cholesterol ester

C20:5 CE:

C20:5 cholesterol ester

C22:1:

Erucic acid

C22:2:

c -13,16-Docosadienoic acid

C22:5n-6:

Dpan-6

C22:6 CE:

C22:6 cholesterol esters

C24:0:

Tetracosanoic acid

C24:1:

Nervonic acid

C30:0 DAG:

C30:0 diacylglycerol

C32:0 DAG:

C32:0 diacylglycerol

C32:1:

Dotriacontenylic acid

C32:1 DAG:

C32:1 diacylglycerol

C32:2 DAG:

C32:2 diacylglycerol

C34:0 DAG:

C34:0 diacylglycerol

C34:1:

Tetratriacontenylic acid

C34:1 DAG:

C34:1 diacylglycerol

C34:1 PC plasmalogen A:

C34:1 Phosphatidylcholine plasmalogen A

C34:2:

Tetratriacontadienoic acid

C34:2 DAG:

C34:2 diacylglycerol

C34:3:

Acyl-akyl-phosphatidylcholine

C34:3 DAG:

C34:3 diacylglycerol

C34:4 PC:

C34:4 Phosphatidylcholine

C36:0:

Hexatriacontanoic acid

C36:0 DAG:

C36:0 diacylglycerol

C36:1 DAG:

C36:1 diacylglycerol

C36:1 PC plasmalogen:

C36:1 Phosphatidylcholine plasmalogen

C36:2:

Hexatriacontadienoic acid

C36:2 DAG:

C36:2 diacylglycerol

C36:2 PC plasmalogen:

C36:2 Phosphatidylcholine plasmalogen

C36:3 DAG:

C36:3 diacylglycerol

C36:3 PC plasmalogen:

C36:3 Phosphatidylcholine plasmalogen

C36:4 DAG:

C36:4 diacylglycerol

C38:0:

Octatriactanoic acid

C38:3 PC:

C38:3 Phosphatidylcholine

C38:4 DAG:

C38:4 diacylglycerol

C38:5 DAG:

C38:5 diacylglycerol

C38:6 PC:

C38:6 Phosphatidylcholine

C38:7 PE plasmalogen:

C38:7 Phosphatidylethanolamine plasmalogen

C40:6 PE:

C40:6 Phosphatidylethanolamine

C40:9 PC:

C40:9 Phosphatidylcholine

C46:2 TAG:

C46:2 triacylglycerol

C46:3 TAG:

C46:3 triacylglycerol

C46:4 TAG:

C46:4 triacylglycerol

C48:1 TAG:

C48:1 triacylglycerol

C48:2 TAG:

C48:2 triacylglycerol

C48:3 TAG:

C48:3 triacylglycerol

C48:4 TAG:

C48:4 triacylglycerol

C50:0 TAG:

C50:0 triacylglycerol

C50:1 TAG:

C50:1 triacylglycerol

C50:2 TAG:

C50:2 triacylglycerol

C50:3 TAG:

C50:3 triacylglycerol

C50:4 TAG:

C50:4 triacylglycerol

C50:5 TAG:

C50:5 triacylglycerol

C50:6 TAG:

C50:6 triacylglycerol

C52:0 TAG:

C52:0 triacylglycerol

C52:1 TAG:

C52:1 triacylglycerol

C52:2 TAG:

C52:2 triacylglycerol

C52:3 TAG:

C52:3 triacylglycerol

C52:4 TAG:

C52:4 triacylglycerol

C52:5 TAG:

C52:5 triacylglycerol

C52:6 TAG:

C52:6 triacylglycerol

C52:7 TAG:

C52:7 triacylglycerol

C54:1 TAG:

C54:1 triacylglycerol

C54:2 TAG:

C54:2 triacylglycerol

C54:6 TAG:

C54:6 triacylglycerol

C54:7 TAG:

C54:7 triacylglycerol

C54:8 TAG:

C54:8 triacylglycerol

C54:9 TAG:

C54:9 triacylglycerol

C56:5 TAG:

C56:5 triacylglycerol

C56:6 TAG:

C56:6 triacylglycerol

C56:7 TAG:

C56:7 triacylglycerol

C56:8 TAG:

C56:8 triacylglycerol

C56:9 TAG:

C56:9 triacylglycerol

C56:10 TAG:

C56:10 triacylglycerol

C58:6 TAG:

C58:6 triacylglycerol

C58:7 TAG:

C58:7 triacylglycerol

C58:8 TAG:

C58:8 triacylglycerol

C58:9 TAG:

C58:9 triacylglycerol

C58:10 TAG:

C58:10 triacylglycerol

C58:11 TAG:

C58:11 triacylglycerol

CE:

Cholesterol ester

CE(20:3):

cholesterol ester (20:3)

CE(22:5):

cholesterol ester (22:5)

CE(22:6):

cholesterol ester (22:6)

Cer(d18:0/23:0):

ceramides(d18:0/23:0)

Cer(d18:1/18:0):

ceramides(d18:1/18:0)

DG(44:5):

Diacylglycerol (44:5)

DHEA-S:

Dehydroepiandrosterone sulfate

Glu:

Glutamic acid

Gly:

Glycine

HDL:

High-density lipoprotein

His:

Histidine

Leu:

Leucine

LPA 16:0:

[(2R)-2-(hexadecanoyloxy)-3-hydroxypropoxy]phosphonic acid

LPC:

Lysophosphatidylcholines

LPCa C14:0:

lysoPhosphatidylcholine a C14:0

LPCa C16:0:

lysoPhosphatidylcholine a C16:0

LPC a c16:0 / LPCa C20:3:

lysophophatidylcholine

LPC a c16:0 / LPCa C20:4:

lysophophatidylcholine

LPC a c16:0 / PC aa C32:0:

lysophophatidylcholine

LPC a c16:0 / PC aa C36:2:

lysophophatidylcholine

LPCa C16:1:

lysoPhosphatidylcholine a C16:1

LPC a c18:0/ LPCa C20:3:

lysophophatidylcholine

LPC a c18:0 / LPCa C20:4:

lysophophatidylcholine

LPC a c18:0 / PC aa C36:2:

lysophophatidylcholine

LPC a c18:0 / PC aa C36:1:

lysophophatidylcholine

LPC Ac18:1:

lysophophatidylcholine

LPC Ac18:2:

lysophophatidylcholine

LPCa C18:3:

lysoPhosphatidylcholine a C18:3

LPCa C20:3:

lysoPhosphatidylcholine a C20:3

LPCa C20:4:

lysoPhosphatidylcholine a C20:4

LPC Ac20:4:

lysophophatidylcholine

LPE:

Lysophosphatidylethanolamines

LysoPC(18:1):

lysoPhosphatidylcholine (18:1)

LysoPC(18:2):

lysoPhosphatidylcholine (18:2)

LysoPC(20:1):

lysoPhosphatidylcholine (20:1)

lysoPC a C16:0:

lysoPhosphatidylcholine acyl C16:0

LysoPC a C17:0:

Lysophosphatidylcholine a C17:0

lysoPC a C17:0:

lysoPhosphatidylcholine acyl C17:0

LysoPC a C18:0:

lysoPhosphatidylcholine a C18:0

lysoPC a C18:0:

lysoPhosphatidylcholine acyl C18:0

lyso.PC.a.C18.1:

lysoPhosphatidylcholine a C18:1

lysoPC a C18:1:

lysoPhosphatidylcholine acyl C18:1

LysoPC a C18:2:

lysoPhosphatidylcholine a C18:2

lysoPC a C18:2:

lysoPhosphatidylcholine acyl C18:2

lyso.PC.a.C18.3:

lysoPhosphatidylcholine a C18:3

lysoPC a C20:4:

lysoPhosphatidylcholine a C20:4

lysoPC a C26:0:

lysoPhosphatidylcholine acyl C26:0

lyso.PC.e.C16.0:

lysoPhosphatidylcholine a C16.0

lyso.PC.e.C18.0:

lysoPhosphatidylcholine a.C18.0

LysoPE(22:4):

lysoPhosphatidylcholine (22:4)

LysoPE a 18:0:

Lysophosphatidylethanolamine(0:0/18:0)

LysoPE a 18:1:

Lysophosphatidylethanolamine(18:1/0:0)

LysoPE a 18:2:

Lysophosphatidylethanolamine(18:2)

N-C18-1-Cer:

N-(9Z-octadecenoyl)-ceramide; N-(oleoyl)-ceramide

NEFA.12.1:

non-esterified fatty acids

NEFA.14.0:

non-esterified fatty acids

NEFA.14.1:

non-esterified fatty acids

NEFA.14.2:

non-esterified fatty acids

NEFA.14.4:

non-esterified fatty acids

NEFA 15:0:

non-esterified fatty acids

NEFA.16.0:

non-esterified fatty acids

NEFA.16.1:

non-esterified fatty acids

NEFA.16.2:

non-esterified fatty acids

NEFA.17.0:

non-esterified fatty acids

NEFA.17.1:

non-esterified fatty acids

NEFA 18:1:

non-esterified fatty acids

NEFA.18.2:

non-esterified fatty acids

NEFA.18.3:

non-esterified fatty acids

NEFA.18.4:

non-esterified fatty acids

NEFA.19.1:

non-esterified fatty acids

NEFA 20:1:

non-esterified fatty acids

NEFA.20.2:

non-esterified fatty acids

NEFA 20:3:

non-esterified fatty acids

NEFA 20:4:

non-esterified fatty acids

NEFA.20.5:

non-esterified fatty acids

NEFA 22:4:

non-esterified fatty acids

NEFA 22:5:

non-esterified fatty acids

NEFA C20:5:

non-esterified fatty acids C20:5

NEFA C22:6:

non-esterified fatty acids C22:6

PA(28:0):

Phosphtatidic acid (28:0)

PC:

Phosphatidylcholine

PC(16:0/O-1:0):

Phosphatidylcholine(16:0/O-1:0)

PC(16:0/O-16:0):

Phosphatidylcholine (16:0/O-16:0)

PC(18:3/dm18:1):

Phosphatidylcholine(18:3/dm18:1)

PC(19:3):

Phosphatidylcholine(19:3)

PC(22:4/dm18:1):

Phosphatidylcholine(22:4/dm18:1)

PC(35:2):

Phosphatidylcholine(35:2)

PCA:

2-Pyrrolidone-5-carboxylic acid

PC aa C28:1:

Phosphatidylcholine diacyl C28:1

PC aa C30:2:

Phosphatidylcholine diacyl C 30:2

PC aa C32:0:

Phosphatidylcholine diacyl C32:0

PC aa C32:1:

Phosphatidylcholine diacyl C32:1

PC.aa.C32.3:

Phosphatidylcholine diacyl C32.3

PC aa C34:1:

Phosphatidylcholine diacyl C34:1

PC aa C34:2:

Phosphatidylcholine diacyl C34:2

PC aa C34:3:

Phosphatidylcholine diacyl C34:3

PC aa C34:4:

Phosphatidylcholine diacyl C34:4

PC.aa.C34.5:

Phosphatidylcholine diacyl C34.5

PC aa C36:0:

Phosphatidylcholine diacyl C36:0

PC aa C36:1:

Phosphatidylcholine diacyl C36:1

PC aa C36:2:

Phosphatidylcholine diacyl C36:2

PC aa C36:3:

Phosphatidylcholine diacyl C36:3

PC aa C36:4:

Phosphatidylcholine diacyl C36:4

PC aa C36:5:

Phosphatidylcholine diacyl C36:5

PC aa C36:6:

Phosphatidylcholine diacyl C36:6

PC aa C38:0:

Phosphatidylcholine diacyl C38:0

PC aa C38:1:

Phosphatidylcholine diacyl C38:1

PC.aa.C38.3:

Phosphatidylcholine diacyl C38:3

PC.aa.C38.4:

Phosphatidylcholine diacyl C38:4

PC aa C38:5:

Phosphatidylcholine diacyl C38:5

PC aa C38:6:

Phosphatidylcholine diacyl C38:6

PC aa C40:0:

Phosphatidylcholine diacyl C40:0

PC aa C40:1:

Phosphatidylcholine diacyl C40:1

PC aa C40:2:

Phosphatidylcholine diacyl C40:2

PC aa C40:3:

Phosphatidylcholine diacyl C40:3

PC.aa.C40.4:

Phosphatidylcholine diacyl C40.4

PC.aa.C40.5:

Phosphatidylcholine diacyl C40:5

PC aa C40:6:

Phosphatidylcholine diacyl C40:6

PC aa C42:0:

Phosphatidylcholine diacyl C42:0

PC aa C42:1:

Phosphatidylcholine diacyl C42:1

PC.aa.C42.2:

Phosphatidylcholine diacyl C42.2

PC aa C42:5:

Phosphatidylcholine diacyl C42:5

PC aa C42:6:

Phosphatidylcholine diacyl C42:6

PC.aa.C43.4:

Phosphatidylcholine diacyl C43:4

PC.aa.C44.12:

Phosphatidylcholine diacyl C44.12

PC ae C32:1 :

Phosphatidylcholine acyl-alkyl C32:1

PC ae C32:2 :

Phosphatidylcholine acyl-alkyl C32:2

PC ae C34:1:

Phosphatidylcholine acyl-alkyl C34:1

PC.ae.C34.2:

Phosphatidylcholine acyl-alkyl C34.2

PC ae C34:3:

Phosphatidylcholine acyl-alkyl C34:3

PC ae 36:0:

Phosphatidylcholine acyl-alkyl 36:0

PC ae 36:1:

Phosphatidylcholine acyl-alkyl 36:1

PC ae 36:2 :

Phosphatidylcholine acyl-alkyl C 36:2

PC ae 36:3 :

Phosphatidylcholine acyl-alkyl C 36:3

PC ae 36:4:

Phosphatidylcholine acyl-alkyl36:4

PC.ae.C36.5:

Phosphatidylcholine acyl-alkyl C36.5

PC ae C38:0 :

Phosphatidylcholine acyl-alkyl C38:0

PC ae C38:1 :

Phosphatidylcholine acyl-alkyl C38:1

PC ae C38:2:

Phosphatidylcholine acyl-alkyl C38:2

PC.ae.C38.3:

Phosphatidylcholine acyl-alkyl C38.3

PC ae C38:4:

Phosphatidylcholine acyl-alkyl C38:4

PC ae C38:5:

Phosphatidylcholine acyl-alkyl C38:5

PC ae C38:6:

Phosphatidylcholine acyl-alkyl C44:4

PC ae C40:1 :

Phosphatidylcholine acyl-alkyl C40:1

PC ae C40:2 :

Phosphatidylcholine acyl-alkyl C40:2

PC ae C40:3 :

Phosphatidylcholine acyl-alkyl C40:3

PC ae C40:4 :

Phosphatidylcholine acyl-alkyl C40:4

PC ae C40:5 :

Phosphatidylcholine acyl-alkyl C40:5

PC ae C42:0 :

Phosphatidylcholine acyl-alkyl C42:0

PC ae C42:1 :

Phosphatidylcholine acyl-alkyl C42:1

PC ae C42:2 :

Phosphatidylcholine acyl-alkyl C42:2

PC ae C42:3 :

Phosphatidylcholine acyl-alkyl C42:3

PC ae C42:4 :

Phosphatidylcholine acyl-alkyl C42:4

PC ae C42:5 :

Phosphatidylcholine acyl-alkyl C42:5

PC ae C44:3:

Phosphatidylcholine acyl-alkyl C44:3

PC ae C44:4:

Phosphatidylcholine acyl-alkyl C44:4

PC ae C44:5:

Phosphatidylcholine acyl-alkyl C44:5

PC(O-10:0/O-8:0):

Phosphatidylcholine(O-10:0/O-8:0)

PC(O-10:0/O-10:0):

Phosphatidylcholine(O-10:0/O-10:0)

PC (O-10:0/O-12:0):

Phosphatidylcholine (O-10:0/O-12:0)

PE(22:1/dm18:1):

Phosphatidylethanolamine(22:1/dm18:1)

PE(22:4/dm18:0):

Phosphatidylethanolamine(22:4/dm18:0)

PG(38:3):

Prostaglandin(38:3)

Phe:

Phenylalanine

PS(24:0):

Phosphtatidylserines(24:0)

SDMA:

Symmetric dimethylarginine

SFA:

Saturated fatty acid

SM:

Sphingomyelin

SM C16:0 or SM (d18:1/16:0):

n-(hexadecanoyl)-sphing-4-enine-1-phosphocholine

SM C24:1:

n-(hexadecanoyl)-sphing-4-enine-1-phosphocholine

SM (d16:1/18:0):

N-(octadecanoyl)-hexadecasphing-4-enine-1-phosphocholine

SM(d18:0/20:0):

Sphingomyelin(d18:0/20:0)

SM(d18:1/16:0):

Sphingomyelin(d18:1/16:0)

SM (d18:2/16:0):

N-(hexadecanoyl)-4E,14Z-sphingadienine-1-phosphocholine

SM (d18:2/18:0):

N-(octadecanoyl)-4E,14Z-sphingadienine-1-phosphocholine

SM (OH) C14:1:

Hydroxysphingomyeline C14:1

SM (OH) C16:1 :

HydroxySphingomyelin C16:1

SM (OH) C22:1 :

N-[(13Z)-3-Hydroxydocos-13-enoyl]sphing-4-enine-1-phosphocholine

SM (OH) C22:2 :

HydroxySphingomyelin C22:2

SM (OH) C24:1 :

HydroxySphingomyelin C24:1

TAG:

Triacylglycerols

TG(36:0):

Triglycerides(36:0)

TG(56:11):

Triglycerides(56:11)

Tyr:

Tyrosine

Val:

Valine

References

  1. Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, Adams RJ, Aekplakorn W, Afsana K, Aguilar-Salinas CA. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128· 9 million children, adolescents, and adults. The Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  2. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, Yaakob H. Metabolomics - the complementary field in systems biology: a review on obesity and type 2 diabetes. Mol BioSyst. 2015;11:1742–74.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad MS, Alsaleh M, Kimhofer T, Ahmad S, Jamal W, Wali SO, Nicholson JK, Damanhouri ZA, Holmes E. Metabolic zzphenotype of obesity in a Saudi population. J Proteome Res. 2017;16:635–44.

    Article  CAS  PubMed  Google Scholar 

  4. Allam-Ndoul B, Guénard F, Garneau V, Cormier H, Barbier O, Pérusse L, Vohl M-C. Association between metabolite profiles, metabolic syndrome and obesity status. Nutrients. 2016;8:324.

    Article  PubMed Central  Google Scholar 

  5. Almanza-Aguilera E, Brunius C, Bernal-Lopez MR, Garcia-Aloy M, Madrid-Gambin F, Tinahones FJ, Gomez-Huelgas R, Landberg R, Andres-Lacueva C. Impact in plasma metabolome as effect of lifestyle intervention for weight-loss reveals metabolic benefits in metabolically healthy obese women. J Proteome Res. 2018;17:2600–10.

    Article  PubMed  Google Scholar 

  6. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clinic Proceedings: Elsevier; 2013. p. 1127–40.

    Google Scholar 

  7. Badoud F, Lam KP, Dibattista A, Perreault M, Zulyniak MA, Cattrysse B, Stephenson S, Britz-Mckibbin P, Mutch DM. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res. 2014;13:3455–66.

    Article  CAS  PubMed  Google Scholar 

  8. Badoud F, Perreault M, Zulyniak MA, Mutch DM. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals. FASEB J. 2015;29:748–58.

    Article  CAS  PubMed  Google Scholar 

  9. Baek SH, Kim M, Kim M, Kang M, Yoo HJ, Lee NH, Kim YH, Song M, Lee JH. Metabolites distinguishing visceral fat obesity and atherogenic traits in individuals with overweight. Obesity. 2017;25:323–31.

    Article  CAS  PubMed  Google Scholar 

  10. Bagheri M, Djazayery A, Qi L, Yekaninejad MS, Chamari M, Naderi M, Ebrahimi Z, Koletzko B, Uhl O, Farzadfar F. Effectiveness of vitamin D therapy in improving metabolomic biomarkers in obesity phenotypes: two randomized clinical trials. Int J Obes. 2018;42:1782–96.

    Article  Google Scholar 

  11. Bagheri M, Djazayery A, Farzadfar F, Qi L, Yekaninejad MS, Aslibekyan S, Chamari M, Hassani H, Koletzko B, Uhl O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis. 2019a;18:1–9.

    Article  Google Scholar 

  12. Bagheri M, Djazayery A, Farzadfar F, Qi L, Yekaninejad MS, Aslibekyan S, Chamari M, Hassani H, Koletzko B, Uhl O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis. 2019b;18:94.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bakar MHA, Sarmidi MR, Cheng K-K, Khan AA, Suan CL, Huri HZ, Yaakob H. Metabolomics–the complementary field in systems biology: a review on obesity and type 2 diabetes. Mol BioSyst. 2015;11:1742–74.

    Article  PubMed  Google Scholar 

  14. Brozinick J, Hawkins E, Bui HH, Kuo M, Tan B, Kievit P, Grove K. Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet. Int J Obes. 2013;37:1064.

    Article  CAS  Google Scholar 

  15. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, Göring H, Cole SA, Comuzzie AG. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr. 2015;102:256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cetin I, Parisi F, Berti C, Mando C, Desoye G. Placental fatty acid transport in maternal obesity. J Dev Orig Health Dis. 2012;3:409–14.

    Article  CAS  PubMed  Google Scholar 

  17. Chashmniam S, Madani NH, Ghoochani BFNM, Safari-Alighiarloo N, Khamseh ME. The metabolome profiling of obese and non-obese individuals: metabolically healthy obese and unhealthy non-obese paradox. Iranian J Basic Med Sci. 2020;23:186.

    Google Scholar 

  18. Chen H-H, Tseng YJ, Wang S-Y, Tsai Y-S, Chang C-S, Kuo T-C, Yao W-J, Shieh C-C, Wu C-H, Kuo P-H. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes. 2015;39:1241.

    Article  CAS  Google Scholar 

  19. Cho K, Moon J, Kang JH, Jang H, Lee HJ, Park S, Yu KS, Cho JY. Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents. Pediatric obesity. 2017;12:93–101.

    Article  CAS  PubMed  Google Scholar 

  20. Collaborators, G. O. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  21. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JH. Association of blood lactate with type 2 diabetes: the atherosclerosis risk in communities carotid MRI study. Int J Epidemiol. 2010;39:1647–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Desert R, Canlet C, Costet N, Cordier S, Bonvallot N. Impact of maternal obesity on the metabolic profiles of pregnant women and their offspring at birth. Metabolomics. 2015;11:1896–907.

    Article  CAS  Google Scholar 

  23. Dugas LR, Chorell E, Plange-Rhule J, Lambert EV, Cao G, Cooper RS, Layden BT, Scholten D, Olsson T, Luke A. Obesity-related metabolite profiles of black women spanning the epidemiologic transition. Metabolomics. 2016;12:45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, Vaughan AA, Halsall A, Harding N, Knowles JD. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 2015;11:9–26.

    Article  CAS  PubMed  Google Scholar 

  25. Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, Ebbels TM, Ueshima H, Zhao L, van Horn L. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7:285ra62.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fattuoni C, Mandò C, Palmas F, Anelli GM, Novielli C, Laudicina EP, Savasi VM, Barberini L, Dessì A, Pintus R. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta. 2018;61:89–95.

    Article  CAS  PubMed  Google Scholar 

  27. Feng R, Sun G, Zhang Y, Sun Q, Ju L, Sun C, Wang C. Short-term high-fat diet exacerbates insulin resistance and glycolipid metabolism disorders in young obese men with hyperlipidemia, as determined by metabolomics analysis using ultra-HPLC-quadrupole time-of-flight mass spectrometry. J Diabetes. 2019;11:148–60.

    Article  CAS  PubMed  Google Scholar 

  28. Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, Mcconnell JP, Chade AR, Lerman LO, Lerman A. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Phys Heart Circ Phys. 2007;292:H904–11.

    CAS  Google Scholar 

  29. Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Sphingolipids as Signaling and Regulatory Molecules: Springer; 2010.

    Google Scholar 

  30. Gawlik A, Shmoish M, Hartmann MF, Malecka-Tendera E, Wudy SA, Hochberg ZE. Steroid metabolomic disease signature of nonsyndromic childhood obesity. J Clin Endocrinol Metab. 2016;101:4329–37.

    Article  CAS  PubMed  Google Scholar 

  31. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr. 2005;82:497–503.

    Article  CAS  PubMed  Google Scholar 

  32. Hellmuth C, Demmelmair H, Schmitt I, Peissner W, Blüher M, Koletzko B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One. 2013;8:e74927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hellmuth C, Lindsay KL, Uhl O, Buss C, Wadhwa PD, Koletzko B, Entringer S. Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes. 2017a;41:159.

    Article  CAS  Google Scholar 

  34. Hellmuth C, Uhl O, Standl M, Demmelmair H, Heinrich J, Koletzko B, Thiering E. Cord blood metabolome is highly associated with birth weight, but less predictive for later weight development. Obesity Facts. 2017b;10:85–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hellmuth C, Lindsay KL, Uhl O, Buss C, Wadhwa PD, Koletzko B, Entringer S. Maternal Metabolomic profile and fetal programming of offspring adiposity: identification of potentially protective lipid metabolites. Mol Nutr Food Res. 2019;63:e1700889.

    Article  PubMed  Google Scholar 

  36. Ho JE, Larson MG, Ghorbani A, Cheng S, Chen M-H, Keyes M, Rhee EP, Clish CB, Vasan RS, Gerszten RE. Metabolomic profiles of body mass index in the Framingham heart study reveal distinct cardiometabolic phenotypes. PLoS One. 2016;11:e0148361.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33:469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu YH, Churchhouse C, Pers TH, Mercader JM, Metspalu A, Fischer K, Fortney K, Morgen EK, Gonzalez C, Gonzalez ME, Esko T, Hirschhorn JN. PAIRUP-MS: pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data. PLoS Comput Biol. 2019;15:e1006734.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang C-F, Cheng M-L, Fan C-M, Hong C-Y, Shiao M-S. Nicotinuric acid: a potential marker of metabolic syndrome through a metabolomics-based approach. Diabetes Care. 2013;36:1729–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005;2:251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iida m, Harada s, Kurihara A, Fukai K, Kuwabara K, Sugiyama D, Takeuchi A, Okamura T, Akiyama M, Nishiwaki Y. Profiling of plasma metabolites in postmenopausal women with metabolic syndrome. Menopause (New York, NY). 2016;23:749.

    Article  Google Scholar 

  42. Isherwood CM, van der veen DR, Johnston JD, Skene DJ. Twenty-four-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes. FASEB J. 2017;31:5557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jonas A. Lecithin cholesterol acyltransferase. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2000;1529:245–56.

    CAS  Google Scholar 

  44. Jourdan C, Petersen A-K, Gieger C, Döring A, Illig T, Wang-Sattler R, Meisinger C, Peters A, Adamski J, Prehn C. Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS One. 2012;7:e40009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, Jang Y, Lee JH. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-TOF MS). J Proteome Res. 2010;9:4368–75.

    Article  CAS  PubMed  Google Scholar 

  46. Kim Y-J, Lee H-S, Kim YK, Park S, Kim J-M, Yun JH, Yu H-Y, Kim B-J. Association of metabolites with obesity and type 2 diabetes based on FTO genotype. PLoS One. 2016;11:e0156612.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim MJ, Kim JH, Kim MS, Yang HJ, Lee M, Kwon DY. Metabolomics associated with genome-wide association study related to the basal metabolic rate in overweight/obese Korean women. J Med Food. 2019;22:499–507.

    Article  CAS  PubMed  Google Scholar 

  48. Klautzer L, Becker J, Mattke S. The curse of wealth–middle eastern countries need to address the rapidly rising burden of diabetes. Int J Health Policy Manag. 2014;2:109.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kochhar S, Jacobs DM, Ramadan Z, Berruex F, Fuerholz A, Fay LB. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal Biochem. 2006;352:274–81.

    Article  CAS  PubMed  Google Scholar 

  51. Koletzko B, Beyer J, Brands B, Demmelmair H, Grote V, Haile G, Gruszfeld D, Rzehak P, Socha P, Weber M. Early influences of nutrition on postnatal growth. In: Recent advances in growth research: nutritional, molecular and endocrine perspectives: Karger Publishers; 2013.

    Google Scholar 

  52. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.

    Article  CAS  PubMed  Google Scholar 

  53. Kupek E, Lobo AS, Leal DB, Bellisle F, de Assis MA. Dietary patterns associated with overweight and obesity among Brazilian schoolchildren: an approach based on the time-of-day of eating events. Br J Nutr. 2016;116:1954–65.

    Article  CAS  PubMed  Google Scholar 

  54. Leal-Witt MJ, Ramon-Krauel M, Samino S, Llobet M, Cuadras D, Jimenez-Chillaron JC, Yanes O, Lerin C. Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity. Int J Obes. 2018;42:72–8.

    Article  CAS  Google Scholar 

  55. Lee SH, Kim SH, Lee W-Y, Chung BC, Park MJ, Choi MH. Metabolite profiling of sex developmental steroid conjugates reveals an association between decreased levels of steroid sulfates and adiposity in obese girls. J Steroid Biochem Mol Biol. 2016;162:100–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lei S, Huang F, Zhao A, Chen T, Chen W, Xie G, Zheng X, Zhang Y, Yu H, Zhang P. The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity. FASEB J. 2017;31:3904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin Z, Gonçalves CMV, Dai L, Lu H-M, Huang J-H, Ji H, Wang D-S, Yi L-Z, Liang Y-Z. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models. Anal Chim Acta. 2014;827:22–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Ponomarenko EA, Archakov AI. Mass spectrometry-based metabolomics analysis of obese patients' blood plasma. Int J Mol Sci. 2020;21:568.

    Article  CAS  PubMed Central  Google Scholar 

  59. Mccormack SE, Shaham O, Mccarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity. 2013;8:52–61.

    Article  CAS  PubMed  Google Scholar 

  60. Menni C, Migaud M, Glastonbury CA, Beaumont M, Nikolaou A, Small KS, Brosnan MJ, Mohney RP, Spector TD, Valdes AM. Metabolomic profiling to dissect the role of visceral fat in cardiometabolic health. Obesity. 2016;24:1380–8.

    Article  CAS  PubMed  Google Scholar 

  61. Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, Delany JP. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18:1695–700.

    Article  CAS  PubMed  Google Scholar 

  62. Mihalik SJ, Michaliszyn SF, De Las Heras J, Bacha F, Lee S, Chace DH, Dejesus VR, Vockley J, Arslanian SA. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care. 2012:DC_111577.

  63. Murphy RA, Moore SC, Playdon M, Meirelles O, Newman AB, Milijkovic I, Kritchevsky SB, Schwartz A, Goodpaster BH, Sampson J. Metabolites associated with lean mass and adiposity in older black men. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2017;72:1352–9.

    CAS  Google Scholar 

  64. Newbern D, Balikcioglu PG, Balikcioglu M, Bain J, Muehlbauer M, Stevens R, Ilkayeva O, Dolinsky D, Armstrong S, Irizarry K. Sex differences in biomarkers associated with insulin resistance in obese adolescents: metabolomic profiling and principal components analysis. J Clin Endocrinol Metab. 2014;99:4730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, Li Y, Qi J, Sun C, Feng R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract. 2017;132:45–58.

    Article  CAS  PubMed  Google Scholar 

  66. Organization, W. H. Global status report on noncommunicable diseases 2014: World Health Organization; 2014.

    Google Scholar 

  67. Palau-Rodriguez M, Tulipani S, Marco-Ramell A, Minarro A, Jauregui O, Gonzalez-Dominguez R, Sanchez-Pla A, Ramos-Molina B, Tinahones FJ, Andres-Lacueva C. Characterization of metabolomic profile associated with metabolic improvement after bariatric surgery in subjects with morbid obesity. J Proteome Res. 2018;17:2704–14.

    Article  PubMed  Google Scholar 

  68. Palmnas MSA, Kopciuk KA, Shaykhutdinov RA, Robson PJ, Mignault D, Rabasa-Lhoret R, Vogel HJ, Csizmadi I. Serum metabolomics of activity energy expenditure and its relation to metabolic syndrome and obesity. Sci Rep. 2018;8:3308.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Paris D, Maniscalco M, Melck D, D’Amato M, Sorrentino N, Zedda A, Sofia M, Motta A. Inflammatory metabolites in exhaled breath condensate characterize the obese respiratory phenotype. Metabolomics. 2015;11:1934–9.

    Article  CAS  Google Scholar 

  70. Park S, Sadanala KC, KIM E-K. A metabolomic approach to understanding the metabolic link between obesity and diabetes. Mol Cells. 2015;38:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Payab M, Hasani-Ranjbar S, Larijani B. whether all obese subjects both in metabolic groups and non-metabolic groups should be treated or not: springer; 2014.

    Book  Google Scholar 

  72. Payab M, Kelishadi R, Qorbani M, Motlagh ME, Ranjbar SH, Ardalan G, Zahedi H, Chinian M, Asayesh H, Larijani B. Association of junk food consumption with high blood pressure and obesity in Iranian children and adolescents: the Caspian-IV study. Jornal de Pediatria (Versão em Português). 2015a;91:196–205.

    Article  Google Scholar 

  73. Payab M, Kelishadi R, Ranjbar SH, Motlagh ME, Ardalan G, Zahedi H, Sanaei M, Shafiee G, Asayesh H, Larijani B. Grains and potato consumption in association with anthropomet¬ ric measures and blood pressure in Iranian Chil¬ dren and adolescents: the CASPIAN-IV study. Iran J Public Health. 2015b;44:25–34.

    Google Scholar 

  74. Perng W, Gillman MW, Fleisch AF, Michalek RD, Watkins SM, Isganaitis E, Patti ME, Oken E. Metabolomic profiles and childhood obesity. Obesity. 2014;22:2570–8.

    Article  CAS  PubMed  Google Scholar 

  75. Phung DT, Wang Z, Rutherford S, Huang C, Chu C. Body mass index and risk of pneumonia: a systematic review and meta-analysis. Obes Rev. 2013;14:839–57.

    Article  CAS  PubMed  Google Scholar 

  76. Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppänen-Laakso T, Yki-Järvinen H, Kaprio J, Orešič M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. PLoS One. 2007;2:e218.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. Current metabolomics: technological advances. J Biosci Bioeng. 2013;116:9–16.

    Article  CAS  PubMed  Google Scholar 

  78. Rangel-Huerta OD, Gil A. Nutrimetabolomics: an update on analytical approaches to investigate the role of plant-based foods and their bioactive compounds in non-communicable chronic diseases. Int J Mol Sci. 2016;17:2072.

    Article  PubMed Central  Google Scholar 

  79. Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang R-C, Beilin LJ, Hellmuth C, Oddy WH. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101:871–9.

    Article  CAS  PubMed  Google Scholar 

  80. Rauschert S, Mori TA, Beilin LJ, Jacoby p, Uhl o, Koletzko B, Oddy WH, Hellmuth C. Early life factors, obesity risk, and the metabolome of young adults. Obesity. 2017;25:1549–55.

    Article  PubMed  Google Scholar 

  81. Romo-Hualde A, Huerta AE, Gonzalez-Navarro CJ, Ramos-Lopez O, Moreno-Aliaga MJ, Martinez JA. Untargeted metabolomic on urine samples after alpha-lipoic acid and/or eicosapentaenoic acid supplementation in healthy overweight/obese women. Lipids Health Dis. 2018;17:103.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase: from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2009;16:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sallese A, Zhu J. Mass spectrometry based metabolomics: A novel analytical technique for detecting metabolic syndrome? Bioanalysis. 2017;9:1623–6.

    Article  PubMed  Google Scholar 

  84. Sandler V, Reisetter AC, Bain JR, Muehlbauer MJ, Nodzenski M, Stevens RD, Ilkayeva O, Lowe LP, Metzger BE, Newgard CB. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia. 2017;60:518–30.

    Article  CAS  PubMed  Google Scholar 

  85. Schlecht I, Gronwald W, Behrens G, Baumeister SE, Hertel J, Hochrein J, Zacharias HU, Fischer B, Oefner PJ, Leitzmann MF. Visceral adipose tissue but not subcutaneous adipose tissue is associated with urine and serum metabolites. PLoS ONE. 2017;12:e0175133.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, Boonstra A. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med. 2016;8:64.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One. 2018;13:e0198156.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shokry E, Marchioro L, Uhl O, Bermudez MG, Garcia-Santos JA, Segura MT, Campoy C, Koletzko B. Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol. 2019a;56:421–30.

    Article  PubMed  Google Scholar 

  89. Subbaiah PV, Jiang X-C, Belikova NA, Aizezi B, Huang ZH, Reardon CA. Regulation of plasma cholesterol esterification by sphingomyelin: effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2012;1821:908–13.

    CAS  Google Scholar 

  90. Sun L, Hu C, Yang R, Lv Y, Yuan H, Liang Q, He B, Pang G, Jiang M, Dong J, Yang Z. Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget. 2017;8:88882–93.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Troisi J, Belmonte F, Bisogno A, Pierri L, Colucci A, Scala G, Cavallo P, Mandato C, Di Nuzzi A, Di Michele L, Delli Bovi AP, Guercio Nuzio S, Vajro P. Metabolomic Salivary Signature of Pediatric Obesity Related Liver Disease and Metabolic Syndrome. Nutrients. 2019:11.

  92. Tulipani S, Palau-Rodriguez M, Alonso AM, Cardona F, Marco-Ramell A, Zonja B, De Alda ML, Muñoz-Garach A, Sanchez-Pla A, Tinahones FJ. Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes. Clin Chim Acta. 2016;463:53–61.

    Article  CAS  PubMed  Google Scholar 

  93. Valcárcel B, Ebbels TM, Kangas AJ, Soininen P, Elliot P, Ala-Korpela M, Järvelin M-R, De Iorio M. Genome metabolome integrated network analysis to uncover connections between genetic variants and complex traits: an application to obesity. J R Soc Interface. 2014;11:20130908.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vijay A, Valdes AM. The Metabolomic signatures of weight change. Metabolites. 2019;9:67.

    Article  CAS  PubMed Central  Google Scholar 

  95. Vitkin E, Ben-Dor A, Shmoish M, Hartmann MF, Yakhini Z, Wudy SA, Hochberg ZE. Peer group normalization and urine to blood context in steroid metabolomics: the case of CAH and obesity. Steroids. 2014;88:83–9.

    Article  CAS  PubMed  Google Scholar 

  96. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Römisch-Margl W. Childhood obesity is associated with changes in the serum metabolite profile. Obesity Facts. 2012;5:660–70.

    Article  CAS  PubMed  Google Scholar 

  97. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81–6.

    Article  CAS  PubMed  Google Scholar 

  98. Wang C, Feng R, Sun D, Li Y, Bi X, Sun C. Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Chromatogr B. 2011;879:2871–6.

    Article  CAS  Google Scholar 

  99. Wang Y, Liu D, Li Y, Guo L, Cui Y, Zhang X, Li E. Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS. Biomed Chromatogr. 2016;30:48–54.

    Article  PubMed  Google Scholar 

  100. Wang SM, Yang RY, Wang M, Ji FS, Li HX, Tang YM, Chen WX, Dong J. Identification of serum metabolites associated with obesity and traditional risk factors for metabolic disease in Chinese adults. Nutr Metab Cardiovasc Dis. 2018;28:112–8.

    Article  CAS  PubMed  Google Scholar 

  101. Wijayatunga NN, Sams VG, Dawson JA, Mancini ML, Mancini GJ, Moustaid-Moussa N. Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev. 2018;34:e3045.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Würtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M, Tynkkynen T, soininen P, Havulinna AS, Kaakinen M. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 2014;11:e1001765.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xia B, Zhu Q, Zhao Y, Ge W, Zhao Y, Song Q, Zhou Y, Shi H, Zhang Y. Phthalate exposure and childhood overweight and obesity: urinary metabolomic evidence. Environ Int. 2018;121:159–68.

    Article  CAS  PubMed  Google Scholar 

  104. Xie G, Ma X, Zhao A, Wang C, Zhang Y, Nieman D, Nicholson JK, Jia W, Bao Y, Jia W. The metabolite profiles of the obese population are gender-dependent. J Proteome Res. 2014;13:4062–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin X, Subramanian S, Willinger CM, Chen G, Juhasz P, Courchesne P, Chen BH, Li X, Hwang S-J, Fox CS. Metabolite signatures of metabolic risk factors and their longitudinal changes. J Clin Endocrinol Metab. 2016;101:1779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu HT, Fu XY, Xu B, Zuo LL, Ma HB, Wang SR. Untargeted metabolomics approach (UPLC-Q-TOF-MS) explores the biomarkers of serum and urine in overweight/obese young men. Asia Pac J Clin Nutr. 2018;27:1067–76.

    CAS  PubMed  Google Scholar 

  107. Zhang A, Sun H, Wang X. Emerging role and recent applications of metabolomics biomarkers in obesity disease research. RSC Adv. 2017;7:14966–73.

    Article  CAS  Google Scholar 

  108. Zhao Q, Zhu Y, Best LG, Umans JG, Uppal K, Tran VT, Jones DP, Lee ET, Howard BV, Zhao J. Metabolic profiles of obesity in American Indians: the strong heart family study. PLoS ONE. 2016;11:e0159548.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhong F, Xu M, Bruno RS, Ballard KD, Zhu J. Targeted high performance liquid chromatography tandem mass spectrometry-based metabolomics differentiates metabolic syndrome from obesity. Exp Biol Med. 2017;242:773–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Arjmand or Kambiz Gilany.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(RAR 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payab, M., Tayanloo-Beik, A., Falahzadeh, K. et al. Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord 21, 889–917 (2022). https://doi.org/10.1007/s40200-021-00917-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00917-w

Keywords

Navigation