Skip to main content

Methods to Study Metabolomics

  • Living reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 36 Accesses

Abstract

Metabolic diseases, namely obesity, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes (T2D), are important risk factors for co-morbidities and mortality. However, not all subjects with metabolic diseases progress toward more severe forms. Thus, it is becoming urgent the discovery of biomarkers that can differentiate phenotypes with different associated risks as well as pathophysiological markers of disease that can be targeted. The use of new omics techniques (i.e., genomics, transcriptomics, metabolomics, lipidomics, and metagenomics) is now becoming a common way to discover biomarkers of metabolic alteration and progression toward more severe morbidity and mortality. Metabolomics has the advantage that it can be investigated directly in plasma samples taken during fasting or postprandial conditions, or in other biological samples, such as urine or feces. Metabolite concentrations are a mirror of alterations in metabolic fluxes. Moreover, also the gut microbiome is involved in the worsening of metabolic diseases since gut bacteria produce metabolites that can either stimulate hormone secretion or act as signaling molecules. Thus, the study of most relevant metabolites is necessary for the elucidation of pathophysiological pathways.

This chapter focuses on the metabolites considered relevant for human metabolism and describes the approaches currently used to study the metabolomic profile in biological samples by discussing the targeted versus untargeted approaches and the analytical workflow required to study different classes of metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahlin S, Cefalo C, Bondia-Pons I, Capristo E, Marini L, Gastaldelli A, Mingrone G, Nolan JJ. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg. 2019;106:1178–86.

    Article  CAS  PubMed  Google Scholar 

  • Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11:1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, Nieuwdorp M, Clement K. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279–97.

    Article  PubMed  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics. 2018;14:152.

    Article  PubMed  Google Scholar 

  • Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem. 2012;402:231–47.

    Article  CAS  PubMed  Google Scholar 

  • Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794.

    Article  PubMed  Google Scholar 

  • Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152:1679–94.e3.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li E-M, Xu L-Y. Guide to metabolomics analysis: a bioinformatics workflow. Metabolites. 2022;12:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costabile G, Vetrani C, Bozzetto L, Giacco R, Bresciani L, Del Rio D, Vitale M, Della Pepa G, Brighenti F, Riccardi G, Rivellese AA, Annuzzi G. Plasma TMAO increase after healthy diets: results from 2 randomized controlled trials with dietary fish, polyphenols, and whole-grain cereals. Am J Clin Nutr. 2021;114:1342–50.

    Article  PubMed  Google Scholar 

  • Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev. 2022;74:506–51.

    Article  CAS  PubMed  Google Scholar 

  • De Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Torre S, Mitro N, Meda C, Lolli F, Pedretti S, Barcella M, Ottobrini L, Metzger D, Caruso D, Maggi A. Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab. 2018;28:256–67.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: the role of bioavailability. Nutrients. 2021;13:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emwas AH, Roy R, Mckay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR spectroscopy for metabolomics research. Meta. 2019;9:123.

    CAS  Google Scholar 

  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114:30.4.1–32.

    Article  PubMed  Google Scholar 

  • Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, Bugianesi E, Gastaldelli A. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67:145–58.

    Article  CAS  PubMed  Google Scholar 

  • Gardinassi LG, Xia J, Safo SE, Li S. Bioinformatics tools for the interpretation of metabolomics data. Curr Pharmacol Rep. 2017;3:374–83.

    Article  Google Scholar 

  • Gastaldelli A. Measuring and estimating insulin resistance in clinical and research settings. Obesity (Silver Spring). 2022;30:1549–63.

    Article  PubMed  Google Scholar 

  • Greco G, Letzel T. Main interactions and influences of the chromatographic parameters in HILIC separations. J Chromatogr Sci. 2013;51:684–93.

    Article  CAS  PubMed  Google Scholar 

  • Grzych G, Vonghia L, Bout MA, Weyler J, Verrijken A, Dirinck E, Chevalier Curt MJ, Van Gaal L, Paumelle R, Francque S, Tailleux A, Haas JT, Staels B. Plasma BCAA changes in patients with NAFLD are sex dependent. J Clin Endocrinol Metab. 2020;105:2311–21.

    Article  Google Scholar 

  • Handzlik MK, Gengatharan JM, Frizzi KE, Mcgregor GH, Martino C, Rahman G, Gonzalez A, Moreno AM, Green CR, Guernsey LS, Lin T, Tseng P, Ideguchi Y, Fallon RJ, Chaix A, Panda S, Mali P, Wallace M, Knight R, Gantner ML, Calcutt NA, Metallo CM. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature. 2023;614:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry. 1998;37:11508–15.

    Article  CAS  PubMed  Google Scholar 

  • Hoyles L, Fernandez-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24:1070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Aguirre CE, Cortes-Martin A, Avila-Galvez MA, Gimenez-Bastida JA, Selma MV, Gonzalez-Sarrias A, Espin JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct. 2021;12:10324–55.

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Li XH, Chen WN. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci Rep. 2019;9:9191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AR, Carlson EE. Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal Chem. 2015;87:10668–78.

    Article  CAS  PubMed  Google Scholar 

  • Jones OA, Hugel HM. Bridging the gap: basic metabolomics methods for natural product chemistry. Methods Mol Biol. 2013;1055:245–66.

    Article  CAS  PubMed  Google Scholar 

  • Kalhan SC, Bugianesi E, Mccullough AJ, Hanson RW, Kelley DE. Estimates of hepatic glyceroneogenesis in type 2 diabetes mellitus in humans. Metabolism. 2008;57:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalhan SC, Guo L, Edmison J, Dasarathy S, Mccullough AJ, Hanson RW, Milburn M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60:404–13.

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, Didonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh A, Molinaro A, Stahlman M, Khan MT, Schmidt C, Manneras-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, De Brauw M, Perkins R, Nieuwdorp M, Bergstrom G, Backhed F. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175:947–61.e17.

    Article  CAS  PubMed  Google Scholar 

  • Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77–94.

    Article  CAS  PubMed  Google Scholar 

  • Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, Lehman-Mckeeman LD, Vaillancourt RR, Cherrington NJ. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47:603–15.

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Lednovich K, Xu K, Nnyamah C, Layden BT, Xu P. Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res. 2022;248:128–50.

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Guo L, Zheng F, Wang Q, Wang W, Cui L, Ouyang Y, Liu X, Li E, Shi X, Xu G. Alternate reversed-phase and hydrophilic interaction liquid chromatography coupled with mass spectrometry for broad coverage in metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1152:122266.

    Article  CAS  PubMed  Google Scholar 

  • Magnusdottir S, Ravcheev D, De Crecy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoodi M, Gastaldelli A, Hyotylainen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Oresic M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18:835–56.

    Article  PubMed  Google Scholar 

  • Mccoin CS, Knotts TA, Adams SH. Acylcarnitines – old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11:617–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcgarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res. 2018;122:1238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldoveanu SC, David V. Derivatization methods in GC and GC/MS. In: Kusch P, editor. Gas chromatography – derivatization, sample preparation, application. London: IntechOpen; 2019.

    Google Scholar 

  • Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, Guasch-Ferre M. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45:1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naghipour S, Cox AJ, Peart JN, Du Toit EF, Headrick JP. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? Nutr Res Rev. 2021;34:125–46.

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article  CAS  PubMed  Google Scholar 

  • Ottosson F, Brunkwall L, Smith E, Orho-Melander M, Nilsson PM, Fernandez C, Melander O. The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease. J Hypertens. 2020;38:2427–34.

    Article  CAS  PubMed  Google Scholar 

  • Patterson E, Ryan PM, Wiley N, Carafa I, Sherwin E, Moloney G, Franciosi E, Mandal R, Wishart DS, Tuohy K, Ross RP, Cryan JF, Dinan TG, Stanton C. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Sci Rep. 2019;9:16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Dore J, Mattila I, Plichta DR, Poho P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jorgensen T, Holm JB, Trost K, Meta HITC, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  • Poojary MM, Passamonti P. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: method development and multi-response optimization. J Chromatogr A. 2016;1476:88–104.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Molina B, Queipo-Ortuno MI, Lambertos A, Tinahones FJ, Penafiel R. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr. 2019;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012;58:139–47.

    Article  CAS  PubMed  Google Scholar 

  • Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, Congly SE, Kaplan GG, Shaheen AA. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61.

    Article  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  Google Scholar 

  • Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, Mclean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27:1897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla-Gonzalez MDR, Manning AK, Westerman KE, Aguilar-Salinas CA, Deik A, Clish CB. Metabolomic markers of glucose regulation after a lifestyle intervention in prediabetes. BMJ Open Diabetes Res Care. 2022;10:e003010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sitnikov DG, Monnin CS, Vuckovic D. Systematic assessment of seven solvent and solid-phase extraction methods for metabolomics analysis of human plasma by LC-MS. Sci Rep. 2016;6:38885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokvis E, Rosing H, Beijnen JH. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom. 2005;19:401–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35:904–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8:17–32.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schioth HB, Greiner R, Gautam V. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50:D622–31.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Chinkes DL. Isotope tracers in metabolic research: principles and practice of kinetic analysis. 2nd ed. Hoboken: Wiley; 2004.

    Google Scholar 

  • Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, Tzen CY, Wang YC, Lin CY, Wu MS. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26:938–47.

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Papandreou C, Ruiz-Canela M, Guasch-Ferre M, Clish CB, Dennis C, Liang L, Corella D, Fito M, Razquin C, Lapetra J, Estruch R, Ros E, Cofan M, Aros F, Toledo E, Serra-Majem L, Sorli JV, Hu FB, Martinez-Gonzalez MA, Salas-Salvado J. Association of tryptophan metabolites with incident type 2 diabetes in the PREDIMED trial: a case-cohort study. Clin Chem. 2018;64:1211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Gastaldelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fenizia, S., Scoditti, E., Gastaldelli, A. (2023). Methods to Study Metabolomics. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-08115-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08115-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08115-6

  • Online ISBN: 978-3-031-08115-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics