Skip to main content
Log in

Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of thermoacidophilic archaeon Metallosphaera cuprina (M. cuprina) on the corrosion of Q235 carbon steel in its culture medium was investigated in this work. In the sterile culture medium, the carbon steels showed uniform corrosion morphologies and almost no corrosion products covered the sample surface during 14 days of immersion test. In the presence of M. cuprina, some corrosion pits appeared on the surface of carbon steels in the immersion test, exhibiting typical localized corrosion morphologies. Moreover, the sample surfaces were covered by a large number of insoluble precipitates during the immersion. After 14 days, the thickness of precipitates reached approximately 50 μm. The results of weight loss test and electrochemical test demonstrated that the carbon steels in the M. cuprina-inoculated culture medium had higher corrosion rate than that in the sterile culture medium. The oxygen concentration cell caused by M. cuprina biofilms resulted in localized corrosion behavior, and the ferrous oxidation ability of M. cuprina accelerated the anodic dissolution of carbon steels, thus promoting the corrosion process of carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, F.B. Ma, npj. Mater. Degrad. 1, 1 (2017)

    Article  Google Scholar 

  2. E.Z. Zhou, D.X. Qiao, Y. Yang, D.K. Xu, Y.P. Lu, J.J. Wang, J.A. Smith, H.B. Li, H.L. Zhao, P.K. Liaw, F.H. Wang, J. Mater. Sci. Technol. 46, 201 (2020)

    Article  Google Scholar 

  3. H.C. Qian, D.W. Zhang, T.Y. Cui, W.W. Chang, F.H. Cao, C.W. Du, X.G. Li, Corros. Sci. 178, 109057 (2021)

    Article  CAS  Google Scholar 

  4. D.K. Xu, Y.C. Li, F.M. Song, T.Y. Gu, Corros. Sci. 77, 385 (2013)

    Article  CAS  Google Scholar 

  5. R. Jia, D.Q. Yang, J. Xu, D.K. Xu, T.Y. Gu, Corros. Sci. 127, 1 (2017)

    Article  CAS  Google Scholar 

  6. K.M. Usher, A.H. Kaksonen, I. Cole, D. Marney, Int. Biodeterior. Biodegrad. 93, 84 (2014)

    Article  CAS  Google Scholar 

  7. H.W. Liu, D.K. Xu, B.J. Zheng, M. Asif, F.P. Xiong, G.A. Zhang, H.F. Liu, Acta Metall. Sin.-Engl. Lett. 31, 456 (2018)

    Article  CAS  Google Scholar 

  8. T.Q. Wu, M.C. Yan, D.C. Zeng, J. Xu, C.K. Yu, C. Sun, W. Ke, Acta Metall. Sin.-Engl. 28, 93 (2015)

    Article  CAS  Google Scholar 

  9. S.Q. Chen, D. Zhang, Corros. Sci. 148, 71 (2019)

    Article  CAS  Google Scholar 

  10. Y.C. Li, D.K. Xu, C.F. Chen, X.G. Li, R. Jia, D.W. Zhang, W. Sand, F.H. Wang, T.Y. Gu, J. Mater. Sci. Technol. 34, 1713 (2018)

    Article  CAS  Google Scholar 

  11. W.W. Dou, J.L. Liu, W.Z. Cai, D. Wang, R. Jia, S.G. Chen, T.Y. Gu, Corros. Sci. 150, 258 (2019)

    Article  CAS  Google Scholar 

  12. Y.Q. Dong, Y. Lekbach, Z. Li, D.K. Xu, S.E. Abed, S.I. Koraichi, F.H. Wang, J. Mater. Sci. Technol. 37, 200 (2020)

    Article  Google Scholar 

  13. R. Jia, T. Unsal, D.K. Xu, Y. Lekbach, T.Y. Gu, Int. Biodeterior. Biodegrad. 137, 42 (2019)

    Article  CAS  Google Scholar 

  14. C.R. Woese, O. Kandler, M.L. Wheelis, Proc. Natl. Acad. Sci. U. S. A. 87, 4576 (1990)

    Article  CAS  Google Scholar 

  15. D. Yu, J.M. Kurola, K. Lähde, M. Kymäläinen, A. Sinkkonen, M. Romantschuk, J. Environ. Manage. 143, 54 (2014)

    Article  CAS  Google Scholar 

  16. T. Zhang, L. Ye, A.H.Y. Tong, M.F. Shao, S. Lok, Appl. Microbiol. Biotechnol. 91, 1215 (2011)

    Article  CAS  Google Scholar 

  17. R. Jia, D.Q. Yang, D.K. Xu, T.Y. Gu, Corros. Sci. 145, 47 (2018)

    Article  CAS  Google Scholar 

  18. K.M. Usher, A.H. Kaksonen, I.D. MacLeod, Corros. Sci. 83, 189 (2014)

    Article  CAS  Google Scholar 

  19. E.Z. Zhou, J.J. Wang, M. Moradi, H.B. Li, D.K. Xu, Y.T. Lou, J.H. Luo, L.F. Li, Y.L. Wang, Z.G. Yang, F.H. Wang, J.A. Smith, J. Mater. Sci. Technol. 48, 72 (2020)

    Article  Google Scholar 

  20. R.X. Liang, R.S. Grizzle, K.E. Duncan, M.J. McInerney, J.M. Suflita, Front. Microbiol. 5, 1 (2014)

    Article  Google Scholar 

  21. I.A. Davidova, K.E. Duncan, B.M. Perez-Ibarra, J.M. Suflita, Environ. Microbiol. 14, 1762 (2012)

    Article  CAS  Google Scholar 

  22. H.C. Qian, D.W. Zhang, Y.T. Lou, Z.Y. Li, D.K. Xu, C.W. Du, X.G. Li, Corros. Sci. 145, 151 (2018)

    Article  CAS  Google Scholar 

  23. H.C. Qian, P.F. Ju, D.W. Zhang, L.W. Ma, Y.T. Hu, Z.Y. Li, L.Y. Huang, Y.T. Lou, C.W. Du, Front. Microbiol. 10, 844 (2019)

    Article  Google Scholar 

  24. C.Y. Jiang, L.J. Liu, X. Guo, X.Y. You, S.J. Liu, A. Poetsch, J. Proteomics 109, 276 (2014)

    Article  CAS  Google Scholar 

  25. L.J. Liu, X.Y. You, X. Guo, S.J. Liu, C.Y. Jiang, Int. J. Syst. Evol. Microbiol. 61, 2395 (2011)

    Article  CAS  Google Scholar 

  26. H.C. Qian, S.Y. Liu, P. Wang, Y. Huang, Y.T. Lou, L.Y. Huang, C.Y. Jiang, D.W. Zhang, Bioelectrochemistry 136, 107635 (2020)

    Article  CAS  Google Scholar 

  27. A.M. Jones, P.J. Griffin, R.N. Collins, T.D. Waite, Geochim. Cosmochim. Acta 145, 1 (2014)

    Article  CAS  Google Scholar 

  28. M.A. Javed, P.R. Stoddart, S.A. Wade, Corros. Sci. 93, 48 (2015)

    Article  CAS  Google Scholar 

  29. H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, D.W. Zhang, Corros. Sci. 144, 145 (2018)

    Article  CAS  Google Scholar 

  30. G.X. Li, L.W. Wang, H.L. Wu, C. Liu, X. Wang, Z.Y. Cui, Corros. Sci. 174, 108815 (2020)

    Article  CAS  Google Scholar 

  31. H.W. Liu, T.Y. Gu, G.A. Zhang, Y.F. Cheng, H.T. Wang, H.F. Liu, Corros. Sci. 102, 93 (2016)

    Article  CAS  Google Scholar 

  32. H. Su, R.H. Tang, X.W. Peng, A.G. Gao, Y.J. Han, Bioelectrochemistry 132, 107406 (2020)

    Article  CAS  Google Scholar 

  33. I.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15, 181 (2004)

    Article  CAS  Google Scholar 

  34. I.B. Beech, C.W.S. Cheung, Int. Biodeterior. Biodegrad. 35, 59 (1995)

    Article  CAS  Google Scholar 

  35. X. Zhang, K. Xiao, C.F. Dong, J.S. Wu, X.G. Li, Y.Z. Huang, Eng. Failure Anal. 18, 1981 (2011)

    Article  CAS  Google Scholar 

  36. Y. Huang, H. Shih, F. Mansfeld, Mater. Corros. 61, 302 (2010)

    CAS  Google Scholar 

  37. M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ionics 180, 922 (2009)

    Article  Google Scholar 

  38. D. Starosvetsky, R. Armon, J. Yahalom, J. Starosvetsky, Int. Biodeterior. Biodegrad. 47, 79 (2001)

    Article  CAS  Google Scholar 

  39. H. Wang, L.K. Ju, H. Castaneda, G. Cheng, B.M. Zhang, Corros. Sci. 89, 250 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52001021), the China Postdoctoral Science Foundation (No. 2019M660453) and the Postdoctoral Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchang Qian or Pengfei Ju.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Liu, S., Liu, W. et al. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina. Acta Metall. Sin. (Engl. Lett.) 35, 201–211 (2022). https://doi.org/10.1007/s40195-021-01239-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01239-9

Keywords

Navigation