Skip to main content
Log in

A Synergistic Acceleration of Corrosion of Q235 Carbon Steel Between Magnetization and Extracellular Polymeric Substances

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, surface characterization and electrochemical measurement were employed to investigate the effects of magnetic field (MF) on the corrosion of Q235 carbon steel in a NaCl solution containing sulphate-reducing bacteria (SRB) or extracellular polymeric substances (EPS). Results demonstrated that a 150 mT MF enhanced steel corrosion in a SRB-containing NaCl solution by 202% calculated from weight loss with pitting corrosion as the main corrosion type. Either EPS or MF rendered steel corrosion, but a synergistic interaction between MF and EPS boosted up steel corrosion. This synergistic enhancement could be referred to the alteration in orientation of EPS induced by MF. The presence of higher percentage of chloride ions on the carbon steel surface manifested that MF initiated the erosion of chloride ions on the carbon steel coupon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Liu, J. Zhang, C. Sun, Z. Yu, B. Hou, Corros. Sci. 83, 375 (2014)

    Article  Google Scholar 

  2. X.T. Chang, Y.S. Yin, G.H. Niu, T. Liu, S. Cheng, S.B. Sun, Acta Metall. Sin. (Engl. Lett.) 20, 334 (2007)

    Article  Google Scholar 

  3. D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77, 385 (2013)

    Article  Google Scholar 

  4. D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91, 74 (2014)

    Article  Google Scholar 

  5. D. Cetin, M.L. Aksu, Corros. Sci. 51, 1584 (2009)

    Article  Google Scholar 

  6. M. Stipanicev, F. Turcu, L. Esnault, E.W. Schweitzer, R. Kilian, R. Basseguy, Electrochim. Acta 113, 390 (2013)

    Article  Google Scholar 

  7. B. Zheng, Y. Zhao, W. Xue, H. Liu, Surf. Coat. Technol. 216, 100 (2013)

    Article  Google Scholar 

  8. T.Q. Wu, M.C. Yan, D.C. Zeng, J. Xu, C.K. Yu, C. Sun, W. Ke, Acta Metall. Sin. (Engl. Lett.) 28, 93 (2015)

    Article  Google Scholar 

  9. X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta Metall. Sin. (Engl. Lett.) 30, 601 (2017)

    Article  Google Scholar 

  10. V. Somasundaram, L. Philip, S.M. Bhallamudi, Chem. Eng. J. 171, 572 (2011)

    Article  Google Scholar 

  11. M.D. Ghafari, A. Bahrami, I. Rasooli, D. Arabian, F. Ghafari, Int. Biodeterior. Biodegrad. 80, 29 (2013)

    Article  Google Scholar 

  12. R. Stadler, W. Fuerbeth, K. Harneit, M. Grooters, M. Woellbrink, W. Sand, Electrochim. Acta 54, 91 (2008)

    Article  Google Scholar 

  13. A.F.F. Giacobone, S.A. Rodriguez, A.L. Burkart, R.A. Pizarro, Int. Biodeterior. Biodegrad. 65, 1161 (2011)

    Article  Google Scholar 

  14. W.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15, 181 (2004)

    Article  Google Scholar 

  15. H. Liu, H.H.P. Fang, Biotechnol. Bioeng. 80, 806 (2002)

    Article  Google Scholar 

  16. J.T. Jin, G.X. Wu, Z.H. Zhang, Y.T. Guan, Bioresour. Technol. 165, 162 (2014)

    Article  Google Scholar 

  17. Q. Bao, D. Zhang, D.D. Lv, P. Wang, Corros. Sci. 65, 405 (2012)

    Article  Google Scholar 

  18. J. Jajte, J. Grzegorczyk, M. Zmyslony, E. Rajkowska, Bioelectrochemistry 57, 107 (2002)

    Article  Google Scholar 

  19. R.R. Mohammed, M.R. Ketabchi, G. McKay, Chem. Eng. J. 243, 31 (2014)

    Article  Google Scholar 

  20. C. Niu, J.J. Geng, H.Q. Ren, L.L. Ding, K. Xu, W.H. Liang, Bioresour. Technol. 150, 156 (2013)

    Article  Google Scholar 

  21. J. Hu, C.F. Dong, X.G. Li, K. Xiao, J. Mater. Sci. Technol. 26, 355 (2010)

    Article  Google Scholar 

  22. Z.P. Lu, W. Yang, Corros. Sci. 50, 510 (2008)

    Article  Google Scholar 

  23. A. Rucinskiene, G. Bikulcius, L. Gudaviciute, E. Juzeliunas, Electrochem. Commun. 4, 86 (2002)

    Article  Google Scholar 

  24. R. Sueptitz, K. Tschulik, M. Uhlemann, L. Schultz, A. Gebert, Corros. Sci. 53, 3222 (2011)

    Article  Google Scholar 

  25. R. Sueptitz, K. Tschulik, M. Uhlemann, L. Schultz, A. Gebert, Electrochim. Acta 56, 5866 (2011)

    Article  Google Scholar 

  26. F. Al-Abbas, A. Kakpovbia, B. Mishra, D. Olson, J. Spear, Could non-destructive methodologies enhance the microbiologically influenced corrosion (MIC) in pipeline systems?, in The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation (AIP Publishing, 2013), p. 1270

  27. J. Filipic, B. Kraigher, B. Tepus, V. Kokol, I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012)

    Article  Google Scholar 

  28. L. Fojt, L. Strasak, V. Vetterl, J. Smarda, Bioelectrochemistry 63, 337 (2004)

    Article  Google Scholar 

  29. W.J. Ji, H.M. Huang, A.H. Deng, C.Y. Pan, Micron 40, 894 (2009)

    Article  Google Scholar 

  30. J. Novak, L. Strasak, L. Fojt, I. Slaninova, V. Vetterl, Bioelectrochemistry 70, 115 (2007)

    Article  Google Scholar 

  31. B.J. Zheng, K.J. Li, H.F. Liu, T.Y. Gu, Ind. Eng. Chem. Res. 53, 48 (2014)

    Article  Google Scholar 

  32. A. Bahaj, I. Beech, S. Campbell, P. James, F. Walsh, The effect of magnetic fields on biofilm formation by sulphate reducing bacteria and its implications in the corrosion of iron and steel, in US National Science Foundation Workshop on Biocorrosion and Biofouling, 12 May 1992

  33. H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, H. Liu, Corros. Sci. 100, 484 (2015)

    Article  Google Scholar 

  34. Z.H. Dong, T. Liu, H.F. Liu, Biofouling 27, 487 (2011)

    Article  Google Scholar 

  35. H. Liu, T. Gu, Y. Lv, M. Asif, F. Xiong, G. Zhang, H. Liu, Corros. Sci. 117, 24 (2017)

    Article  Google Scholar 

  36. Z.H. Dong, W. Shi, H.M. Ruan, G.A. Zhang, Corros. Sci. 53, 2978 (2011)

    Article  Google Scholar 

  37. L. Yu, J. Duan, X. Du, Y. Huang, B. Hou, Electrochem. Commun. 26, 101 (2013)

    Article  Google Scholar 

  38. H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu, Corros. Sci. 102, 93 (2016)

    Article  Google Scholar 

  39. H. Liu, D. Xu, A.Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci. 101, 84 (2015)

    Article  Google Scholar 

  40. A. Omoike, J. Chorover, Biomacromolecules 5, 1219 (2004)

    Article  Google Scholar 

  41. V. Crupi, R. Ficarra, M. Guardo, D. Majolino, R. Stancanelli, V. Venuti, J. Pharm. Biomed. Anal. 44, 110 (2007)

    Article  Google Scholar 

  42. P. Smith, S. Roy, D. Swailes, S. Maxwell, D. Page, J. Lawson, Chem. Eng. Sci. 66, 5775 (2011)

    Article  Google Scholar 

  43. N. Numoto, K. Shimizu, K. Matsumoto, K. Miki, A. Kita, J. Cryst. Growth 367, 53 (2013)

    Article  Google Scholar 

  44. C.W. Zhong, N.I. Wakayama, J. Cryst. Growth 226, 327 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shenzhen Strategic Emerging Industry Development Special Fund Project (No. JCYJ20130401144744190) and the Innovation Foundation of Huazhong University of Science and Technology Innovation Institute (Nos. 2015TS150, 2015ZZGH010). We acknowledge the support of the Analytical and Testing Center of the Huazhong University of Science and Technology for SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Ke Xu or Hong-Fang Liu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HW., Xu, DK., Zheng, BJ. et al. A Synergistic Acceleration of Corrosion of Q235 Carbon Steel Between Magnetization and Extracellular Polymeric Substances. Acta Metall. Sin. (Engl. Lett.) 31, 456–464 (2018). https://doi.org/10.1007/s40195-017-0666-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0666-4

Keywords

Navigation