Skip to main content

Advertisement

Log in

A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass (LCB) is plentifully and naturally available carbon source produced mostly from agro, food and food processing industries with a global estimate of 1.3 billion tonnes per year. Since LCB is inexpensive and considered as waste, it opens an avenue for cost-effective alternate source of energy. Lignocellulosic biomass can be effectively and efficiently converted to biofuels (e.g. bioethanol, biodiesel and biogas) and value-added products like organic acids, enzymes, biopolymers, biochar etc. However, the bottleneck in using lignocellulosic biomass on industrial scale is its structural complexity and recalcitrance nature. Thus, pretreatment of biomass is an essential step for efficient delignification of biomass. This process separates cellulose and hemicellulose from lignin of the complex polymer matrix. Thereby, reduces the size of the matrix and increases the surface area of cellulose and hemicelluloses to be accessible for enzymes and microbes for hydrolysis and fermentation respectively. The pretreatment process includes physical, chemical, physicochemical or biological. Mechanical milling, ultrasound and microwave radiation as physical; Acid/alkaline hydrolysis, organosolv, ionic liquids and ozonolysis as chemical; ammonia fiber explosion, CO2 explosion steam explosion, liquid hot water treatment as physicochemical methods are established. The use of certain species of bacteria, fungus and yeast in biological methods of pretreatment is yet to establish on large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References:

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  Google Scholar 

  • Arantes V, Milagres MA, F, (2007) The synergistic action of ligninolytic enzymes (Mn P and laccase) and Fe3+ -reducing activity from white-rot fungi for degradation of Azure B. Enzyme MicrobTechnol 42:17–22. https://doi.org/10.1016/j.enzmictec.2007.07.017

    Article  CAS  Google Scholar 

  • Bai X, Wang G, Yu Y, Wang D, Wang Z (2018) Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment. Bioresour Technol 250:770–776. https://doi.org/10.1016/j.biortech.2017.11.085

    Article  CAS  Google Scholar 

  • Baruah J, Nath BikashKar, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58. https://doi.org/10.1111/j.1574-6976.tb00033

    Article  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA et al (2017) Insight into progress in pretreatment of lignocellulosic biomass. Energy 122:724–745. https://doi.org/10.1016/j.energy.2017.01.005

    Article  CAS  Google Scholar 

  • Bussemaker MJ, Xu F, Zhang D (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23

    Article  CAS  Google Scholar 

  • Case PA, Truong C, Wheeler MC, De Sisto WJ (2015) Calcium-catalyzed pyrolysis of lignocellulosic biomass components. Bioresour Technol 192:247–252

    Article  CAS  Google Scholar 

  • Chakrabortty S, Nayak J, Ruj B, Pal P, Kumar R, Banerjee S, Sardar M, Chakraborty P (2020) Photocatalytic conversion of CO2 to methanol using membrane-integrated green approach: a review on capture, conversion and purification. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103935

    Article  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Chen WH, Nižetić S, Sirohi R, Huang Z, Luque R, M Papadopoulos A, Sakthivel R, Phuong Nguyen X, Tuan Hoang A. (2021) Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: a review. Bioresour Technol. 26; 344(6):126207https://doi.org/10.1016/j.biortech.2021.126207

  • Chintagunta AD, Zuccaro G, Kumar M, Kumar SPJ, Garlapati VK, Postemsky PD, Kumar NSS, Chandel AK, Simal-Gandara J (2021) Biodiesel production from lignocellulosic biomass using oleaginous microbes: prospects for integrated biofuel production. Front Microbiol 12(12):658284. https://doi.org/10.3389/fmicb.2021.658284

    Article  Google Scholar 

  • Chundawat SPS, Pal RK, Zhao C, Campbell T, Teymouri F, Videto J, Nielson C, Wieferich B, Sousa L, Dale B. E, Balan, V, Chipkar S, Aguado J, Burke E, Ong R. G (2020) Ammonia fiber expansion (AFEX) Pretreatment of lignocellulosic biomass. https://doi.org/10.3791/57488

  • Dale BE, Moreira MJ (1982) Freezeexplosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43

    CAS  Google Scholar 

  • Dashtban M, Qin SH, W, (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595. https://doi.org/10.7150/ijbs.5.578

    Article  CAS  Google Scholar 

  • Dawid M, Grzegorz K (2021) Microwave-assisted hydrotropic pretreatment as a new and highly efficient way to cellulosic ethanol production from maize distillery stillage. Appl Microbiol Biotechnol 105(8):3381–3392. https://doi.org/10.1007/s00253-021-11258-2

    Article  CAS  Google Scholar 

  • De Gonzalo G, Colpa DIH, MHM, Fraaije MW, (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011

    Article  CAS  Google Scholar 

  • De Paola MG, Mazza I, Paletta R, Lopresto CG, Calabrò V (2021) Small-scale biodiesel production plants. An Overview Energies 14:1901. https://doi.org/10.3390/en14071901

    Article  CAS  Google Scholar 

  • Den W, Sharma VK, Lee M, Nadadur G, Varma RS (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front Chem 27(6):141. https://doi.org/10.3389/fchem.2018.00141

    Article  CAS  Google Scholar 

  • Diaz A, Le Toullec J, Blandino A, De Ory I, Caro I (2013) Pretreatment of rice hulls with alkaline peroxide to enhance enzyme hydrolysis for ethanol production. ChemEng Trans 32:949–954

    Google Scholar 

  • Dragone D, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. Current research, technology and education topics. In: A. Mendez-Vilas (ed) Applied microbiology and microbial biotechnology

  • Duff SJB, Murrayh WD (1996) Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • Dussán K.J, Justo O.R, Perez V.H. et al. (2019) Bioethanol production from sugarcane bagasse hemicellulose hydrolysate by immobilized S. Shehatae in a Fluidized bed fermenter under magneticfield. Bioenerg. Res. 12, 338346 https://doi.org/10.1007/s12155-019-09971-y

  • EIA (2017) International energy outlook. US Department of Energy, Energy Information administration, Washington, DC

    Google Scholar 

  • El Achkar JH, Lendormi T, Salameh D, Louka N, Maroun RG, Lanoisellé JL, Hobaika Z (2018) Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. BioresourTechnol 247:881–889

    Article  Google Scholar 

  • Fatma S, Hameed A, Noman M, Ahmed T, Shahid M, Tariq M, Sohail I, Tabassum R (2018) Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett 25(2):148–163. https://doi.org/10.2174/0929866525666180122144504

    Article  CAS  Google Scholar 

  • Flores EMM, Cravotto G, Bizzi CA, Santos D, Iop GD (2021) Ultrasound-assisted biomass valorization to industrial interesting products: state-of-the-art, perspectives and challenges. Ultrason Sonochem 2:105455. https://doi.org/10.1016/j.ultsonch.2020.105455

    Article  CAS  Google Scholar 

  • García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysispretreatment on enzymatic digestibility of wheat and rye straw. BioresourTechnol 100:1608–1613

    Article  Google Scholar 

  • Gasser E et al (2014) Microbial production of biopolymers from the renewable resource wheat straw. J Appl Microbiol 117(4):1035–1044

    Article  CAS  Google Scholar 

  • Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. BioresourTechnol 102:8621–8627

    Article  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohypolym 84:1103–1109

    CAS  Google Scholar 

  • Haghighi MS, Hossein Golfeshan A, Tabatabaei M, SalehiJouzani G, Najafi GH, Gholami M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Ener Rev 27:77–93

    Article  Google Scholar 

  • Haldar D, Purkait MK (2021) A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere 264(Pt2):128523. https://doi.org/10.1016/j.chemosphere.2020.128523

    Article  CAS  Google Scholar 

  • Han SY, Park CW, Endo T et al (2020) Extrusion process to enhance the pretreatment effect of ionic liquid for improving enzymatic hydrolysis of lignocellulosic biomass. Wood SciTechnol 54:599–613. https://doi.org/10.1007/s00226-020-01170-9

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. BioresourTechnol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  Google Scholar 

  • Horn S, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. https://doi.org/10.1186/1754-6834-5-45

    Article  CAS  Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotech 103:273–280

    Article  CAS  Google Scholar 

  • Iyyappan J, Bharathiraja B, Vaishnavi A, Prathiba S (2021) Overview of current developments in biobutanol production methods and future perspectives. Methods Mol Biol 2290:3–21. https://doi.org/10.1007/978-1-0716-1323-8_1

    Article  CAS  Google Scholar 

  • Jennita JP, Shenbaga Muthuraman V, Karthick C, Alaswad A, Velvizhi G, Nanthagopal K (2021) Catalytic Microwave Preheated Co-pyrolysis of lignocellulosic biomasses: a study on biofuel production and its characterization. Bioresour Technol 19:126382. https://doi.org/10.1016/j.biortech.2021.126382

    Article  CAS  Google Scholar 

  • Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicolainsolens using rice straw as a carbon source. Bioresour Technol 233:67–73. https://doi.org/10.1016/j.biortech.2017.01.075

    Article  CAS  Google Scholar 

  • Kostas ET, Beneroso D, Robinson JP (2017) The application of microwave heating in bioenergy: a review on the microwave pretreatment and upgrading technologies for biomass. Renew Sustain Energy Rev 77:12–27. https://doi.org/10.1016/j.rser.2017.03.135

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017a) Recent updates on different methods of pretreatment of lignocellulosic feed stocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. IndEngChem Res 48:3713–3729

    CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  • Li P, He C, Li G, Ding P, Lan M, Gao Z, Jiao Y (2020) Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 11(1):251–260. https://doi.org/10.1080/21655979.2020.1733733

    Article  CAS  Google Scholar 

  • Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. ApplBiochemBiotechnol 162:1872–1880

    CAS  Google Scholar 

  • Liu H, Zhang T, Fang HHP (2003) Thermophilic. H2 production from a cellulose-containing wastewater. Biotechnol Lett 25:365–369

    Article  CAS  Google Scholar 

  • Ljungdahl LG (2008) Thecellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann NY Acad Sci 1125:308–321. https://doi.org/10.1196/annals.1419.030

    Article  CAS  Google Scholar 

  • Lorenci Woiciechowski A, Dalmas Neto CJ, de Souza P, Vandenberghe L, de CarvalhoNeto DP, Novak Sydney AC, Letti LAJ, Karp SG, Zevallos Torres LA, Soccol CR (2020) Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance—conventional processing and recent advances. Bioresour Technol 304:122848. https://doi.org/10.1016/j.biortech.2020.122848

    Article  CAS  Google Scholar 

  • Lü H, Ren M, Zhang M, Chen Y (2013) Pretreatment of corn stover using supercritical CO2 with water-ethanol as cosolvent. Chin J Chem Eng 21(5):551–557

    Article  Google Scholar 

  • Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93. https://doi.org/10.1016/j.pecs.2013.11.001

    Article  Google Scholar 

  • Maia JLD, Cardoso JS, Mastrantonio DJDS, Bierhals CK, Moreira JB, Costa JAV, Morais MG (2020) Microalgae starch: a promising raw material for the bioethanol production. Int J BiolMacromol. 15(165(Pt B)):2739–2749. https://doi.org/10.1016/j.ijbiomac.2020.10.159

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1960) Induction of cellulase in fungi by cellobiose. J Bacteriol 79:816–826

    Article  CAS  Google Scholar 

  • Mayer-Laigle C, Blanc N, Rajaonarivony RK, Rouau, X (2018a) Comminution of dry lignocellulosic biomass, a review: part I. From fundamental mechanisms to milling behaviour. Bioengineering (Basel). 2;5(2):41. https://doi.org/10.3390/bioengineering5020041

  • Mayer-Laigle C, Rajaonarivony RK, Blanc N, Rouau X (2018b) Comminution of dry lignocellulosic biomass: Part II. technologies improvement of milling performances, and security issues. Bioengineering (Basel). 22; 5(3):50. https://doi.org/10.3390/bioengineering5030050.

  • McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolour straw using dilute alkali pretreatment. Biores Technol. https://doi.org/10.1016/j.biortech.2010.03.116

    Article  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. ACS Symp Ser 566:292–324

    Article  CAS  Google Scholar 

  • Meneses DB, Montes De Oca-Vásquez G, Roberto Vega-Baudrit J, Rojas-Álvarez M, Corrales-Castillo J, Murillo-Araya LC (2020) Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Convers Biorefin

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 38(4):522–550

    Article  CAS  Google Scholar 

  • Mohanty P, Singh PK, Adhya TK et al (2021) (2021) A critical review on prospects and challenges in production of biomethanol from lignocellulose biomass. Biomass Conv Bioref. https://doi.org/10.1007/s13399-02101815-0

    Article  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotech Bioengg 108(6):1229–2124

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. BioresourTechnol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Ener Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Naseeruddin S, Yadav KS, Sateesh L, Manikyam, (2013) A. Selection of the best chemical pretreatment for lignocellulosic substrate ProsopisJuliflora. Biores Technol 136:542–549

    Article  CAS  Google Scholar 

  • Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sus Energy Rev 79:308–322

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2010) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    Article  Google Scholar 

  • Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J (2021) Recent advances in the valorization of plant biomass. Bioethanol Biofuels. 23;14(1):102. https://doi.org/10.1186/s13068-021-01949-3

    Article  Google Scholar 

  • Nomanbhay SM, Hussain R, Palanisamy K (2013) Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. J Sustain BioenerSyst 3:7–17

    Google Scholar 

  • Ohman M, Boman C, Hedman H, Eklund R (2006) Residential combustion performance of pelletized hydrolysis residue from lignocellulosic ethanol production. Ener and Fuels 20(3):1298–1304

    Article  Google Scholar 

  • Panda SK, Ray RC, Mishra SS, Kayitesi E (2018) Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit Rev Biotechnol 38(1):1–16. https://doi.org/10.1080/07388551.2017.1311295

    Article  CAS  Google Scholar 

  • Paudel YP, Qin W (2015) Characterization of ovelellulase-producing bacteria isolated from rotting wood samples. ApplBiochemBiotechnol 177:1186–1198. https://doi.org/10.1007/s12010-015-1806-9

    Article  CAS  Google Scholar 

  • Peinemann JC, Pleissner D (2020) Continuous pretreatment, hydrolysis, and fermentation of organic residues for the production of biochemicals. Bioresour Technol 295:122256. https://doi.org/10.1016/j.biortech.2019.122256

    Article  CAS  Google Scholar 

  • Pérez J et al (2002a) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  Google Scholar 

  • Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002b) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. IntMicrobiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  CAS  Google Scholar 

  • Picart P, de María PD, Schallmey A (2015) From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization. Front Microbiol 6:916. https://doi.org/10.3389/fmicb.2015.00916

    Article  Google Scholar 

  • Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 31:588–606. https://doi.org/10.1016/j.chemosphere.2019.05.142

    Article  CAS  Google Scholar 

  • Puri VP, Mamers H (1983) Explosive pretreatment of lignocellulosic residues with high-pressure carbon dioxide for the production of fermentation substrates. BiotechnolBioeng 25(12):3149–3161

    CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  Google Scholar 

  • Rajendran K, Drielak E, Varma VS, Muthusamy S, Kumar G (2017) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver Biorefin 8:471–483

    Article  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pretreatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  CAS  Google Scholar 

  • Razaghi A, Karthikeyan OP, Hao HT, Heimann K (2016) Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors. Bioresour Technol 217:100–103. https://doi.org/10.1016/j.biortech.2016.03.041

    Article  CAS  Google Scholar 

  • Sahu S (2016) Conversion of cotton gin waste to bioethanol: pretreatment, hydrolysis and fermentation (Doctoral dissertation). National Institute of Technology Rourkela

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEner Res 1:20–43

    Article  Google Scholar 

  • Sekoai P, Gueguim KE (2013) A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int J Hydrog Energy 38(21):8657–8663

    Article  CAS  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Poly Sci 23:1431–1442

    Article  CAS  Google Scholar 

  • Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valori 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  CAS  Google Scholar 

  • Sharma S, Jha PK, Panwar A (2021) Production of bioethanol from wheat straw via optimization of co-culture conditions of Bacillusli cheniformis and Saccharomy cescerevisie. Discov Energy 1:5. https://doi.org/10.1007/s43937-021-000044

    Article  Google Scholar 

  • Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE (2008) Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl EnvironMicrobiol 74:7252–7257. https://doi.org/10.1128/AEM.01997-08

    Article  CAS  Google Scholar 

  • Shi J, Qing Q, Zhang T, Wyman C, Lloyd T (2011) Biofuels from cellulosic biomass via aqueous processing. In: Ginley DS, Cahen D (eds) Fundamentals of materials for energy and environmental sustainability. Cambridge University Press, Cambridge

    Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  • Singla A, Inubushi K (2014) Effect of biochar on CH4 and N2O emission from soils vegetated with paddy. Paddy Water Environ 12:239–243

    Article  Google Scholar 

  • Singla A, Dubey SK, Iwasa H, Inubushi K (2013) Nitrous oxide flux from komatsuna (Brassica rapa) vegetated soil: a comparison between biogas digested liquid and chemical fertilizer. BiolFertil Soils 49:971–976

    Article  CAS  Google Scholar 

  • Singla A, Dubey SK, Singh A, Inubushi K (2014a) Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. AgricEcosyst Environ 197:278–287

    Article  CAS  Google Scholar 

  • Singla A, Iwasa H, Inubushi K (2014b) Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). BiolFertil Soils 50:1201–1209

    Article  CAS  Google Scholar 

  • Sivers MV, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. BioresouTechn 51:43–52

    Article  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J SciInd Res 64:832–844

    CAS  Google Scholar 

  • Sun YE, Cheng JJ (2005) Dilute acid pretreatment of rye straw and Bermuda grass. BioresoTechnol 96:1599–1606

    Article  CAS  Google Scholar 

  • Sun RC, Tomkinson RC (2002) Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. CarbohyPolym 50:263–271

    CAS  Google Scholar 

  • Sun C, Ren H, Sun F, Hu Y, Liu Q, Song G, Abdulkhani A, LokeShow P (2021) Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresour Technol 2:344(Pt B):126264. https://doi.org/10.1016/j.biortech.2021.126264

    Article  CAS  Google Scholar 

  • Suriyachai N, Weerasai K, Upajak S, Khongchamnan P, Wanmolee W, Laosiripojana N, Champreda V, Suwannahong K, Imman S (2020) Efficiency of Catalytic Liquid Hot Water Pretreatment for Conversion of Corn Stover to Bioethanol. 11;5(46):29872–29881. https://doi.org/10.1021/acsomega.0c04054

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J MolSci 9:1621–1651

    CAS  Google Scholar 

  • Takano M, Hoshino K (2018) Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. BioresourBioprocess. https://doi.org/10.1186/s40643-018-0203-y

    Article  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080

    Article  CAS  Google Scholar 

  • Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates I. Cellulose Hydrolysis Indus EnggChem Res 39:2817–2825

    Article  CAS  Google Scholar 

  • Tu WC, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2019.07.004

    Article  Google Scholar 

  • Ullah S, Noor RS, Sanaullah, et al (2021) Analysis of biofuel (briquette) production from forest biomass: a socioeconomic incentive towards deforestation. Biorefin Biomass Conv. https://doi.org/10.1007/s13399-021-01311-5

    Article  Google Scholar 

  • Urbaniec K, Grabarczyk R (2009) Raw materials for fermentative hydrogen production. J Clean Prod 17:959–962

    Article  CAS  Google Scholar 

  • Uyan M, Alptekin FM, Bastabak B et al (2020) Combined biofuel production from cotton stalk and seed with a biorefinery approach. Biomass Conv Biorefin 10:393–400. https://doi.org/10.1007/s13399-019-00427-z

    Article  CAS  Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin – improvement of in vitro digestibility of poplar sawdust. Biomass 16:1–17

    Article  CAS  Google Scholar 

  • Viola E, Cardinale M, Santarcangelo R, Villone A, Zimbardi F (2008) Ethanol from eel grass via steam explosion and enzymatic hydrolysis. Biomass Bioenergy 32:613–618. https://doi.org/10.1016/j.biombioe.2007.12.009

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungalpretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457. https://doi.org/10.1016/j.biotechadv.03.003

    Article  CAS  Google Scholar 

  • Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259. https://doi.org/10.1016/j.biortech.2011.02.075

    Article  CAS  Google Scholar 

  • Xie RQ, Li XY, Zhang YF (2012) Cellulose pretreatmentwith1-methyl-3-ethylimidazolium dimethyl phosphate for enzymatic hydrolysis. Cell ChemTechn 46(5–6):349–356

    CAS  Google Scholar 

  • Xu F, Sun JX, Liu CF, Sun RC (2003) Comparative study of alkali and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohy Res 341:253–261

    Article  Google Scholar 

  • Xu N, Liu S, Xin F, Zhou J, Jia H, Xu J, Jiang M, Dong W (2019) Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Front Bioeng Biotechnol 8(7):191. https://doi.org/10.3389/fbioe.2019.00191.PMID:31440504;PMCID:PMC6694284

    Article  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High throughput screening for ionic liquids dissolving (ligno-) cellulose. BioresourTechnol 100:2580–2587. https://doi.org/10.1016/j.biortech.2008.11.052

    Article  CAS  Google Scholar 

  • Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. BiotechnolBioeng 97:214–223. https://doi.org/10.1002/bit.21386

    Article  CAS  Google Scholar 

  • Zhang Q, Hu J, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Ener 111:77–84. https://doi.org/10.1016/j.renene.2017.03.093

    Article  CAS  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolvpretreatment of 260 lignocellulosic biomass for enzymatic hydrolysis. ApplMicrobio Biotech 82:815–827

    CAS  Google Scholar 

  • Zhaoa Y, Damgaardb A, Christensenb TH (2018) Bioethanol from corn stover a review and technical assessment of alternative biotechnologies. Progress Energy Combust Sci 67:275–291

    Article  Google Scholar 

  • Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwiniachrysanthemi. J Bacteriol 182:5676–5682. https://doi.org/10.1128/JB.182.20.5676-5682.2000

    Article  CAS  Google Scholar 

  • Zwart RWR, Boerrigter H, Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fisher–Tropsch. Prod Ener Fuels 20:2192–2197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are greatly thankful to the management of GIET University for providing facilities. Also, we are thankful to Dr.Sushil Kumar Sahu, Asst.Professor, Dept. of Biotechnology, GIET University for valuable discussion during revision of the manuscript.

Funding

We did not use any funds in preparing this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Prasad.

Ethics declarations

Conflicts of interest

The authors have declared that no competing interests exist.

Ethics approval

Not applicable as we have not used any animal model for any experiment. This is a review article.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, B.R., Padhi, R.K. & Ghosh, G. A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products. Int. J. Environ. Sci. Technol. 20, 6929–6944 (2023). https://doi.org/10.1007/s13762-022-04252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04252-2

Keywords

Navigation