Skip to main content

Advertisement

Log in

Baghdadite reinforced polycaprolactone scaffold for bone tissue engineering

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, baghdadite (Bag) bioceramic powder was synthesized using the mechanical activation method and was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, whereas, its phase purity was confirmed. Then, polycaprolactone (PCL) porous scaffolds including different amounts of Bag (0, 15, and 30 wt%) were 3D-printed using fused deposition modeling (FDM) method. The 3D-printed nanobiocomposite scaffolds were characterized using SEM, XRD, compression, bioactivity, and biodegradation tests. For bioactivity evaluation, the PCL-Bag composite scaffolds were immersed in the simulated body fluid (SBF) for up to 4 weeks. It was found that the hydroxyapatite formation as a criterion of bioactivity was increased by increasing the Bag content of the composite scaffolds, as well as, increasing their mechanical properties. Results of the degradation test indicated that PCL with 12.3% weight loss, had the lowest degradation rate and PCL-30Bag had the highest degradation with 21.5% weight loss. Also, the results of the cell study showed that with the increase of baghdadite content in the composite, more living cells can be seen on the surface of the scaffolds, provided their non-toxicity property. Finally, this research work showed that PCL-Bag composite scaffold with 30 wt% of baghdadite can be a suitable candidate for bone tissue engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  3. Edlund E, Albertsson A-C (2002) Degradable aliphatic polyesters. Advances in polymer science, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45734-8_3

    Chapter  Google Scholar 

  4. Castillo RV, Müller AJ (2009) Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog Polym Sci 34:516–560

    Article  CAS  Google Scholar 

  5. Ma PX, Elisseeff J (2006) Scaffolding in tissue engineering. Taylor & Francis Group, Boca Raton

    Google Scholar 

  6. Bartnikowski M, Abdal-hay A, Bartnikowski NJ, Kim YK, Ivanovski S (2021) A comprehensive study of acid and base treatment of 3D printed poly (ε-caprolactone) scaffolds to tailor surface characteristics. Appl Surf Sci 555:149602

    Article  CAS  Google Scholar 

  7. Arastouei M, Khodaei M, Atyabi SM, Jafari Nodoushan M (2020) Poly lactic acid akermanite composite scaffolds prepared by fused filament fabrication for bone tissue engineering. J Mater Res Technol 9:14540–14548

    Article  CAS  Google Scholar 

  8. Nadi A, Khodaei M, Javdani M, Mirzaei SA, Soleimannejad M, Tayebi L, Asadpour S (2022) Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol 219:1319–1336

    Article  CAS  PubMed  Google Scholar 

  9. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  10. Roohani-Esfahani S, Dunstan C, Davies B, Pearce S, Williams R, Zreiqat H (2012) Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater 8:4162–4172

    Article  CAS  PubMed  Google Scholar 

  11. No YJ, Roohani-Esfahani SI, Lu Z, Schaer T, Zreiqat H (2015) Injectable radiopaque and bioactive polycaprolactone-ceramic composites for orthopedic augmentation. J Biomed Mater Res B Appl Biomater 103:1465–1477

    Article  CAS  PubMed  Google Scholar 

  12. Karamian E, Nasehi A, Saber-Samandari S, Khandan A (2017) Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique. Nanomed J 4:177–183

    CAS  Google Scholar 

  13. Arefpour A, Kasiri-Asgarani M, Monshi A, Karbasi S, Doostmohammadi A (2020) Baghdadite/Polycaprolactone nanocomposite scaffolds: preparation, characterisation, and in vitro biological responses of human osteoblast-like cells (Saos-2 cell line). Mater Technol 35:421–432. https://doi.org/10.1080/10667857.2019.1692161

    Article  CAS  Google Scholar 

  14. Kim YB, Lim JY, Yang GH, Seo J-H, Ryu H-S, Kim GH (2019) 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. J Ind Eng Chem 79:163–171

    Article  CAS  Google Scholar 

  15. Ronca D, Langella F, Chierchia M, D’Amora U, Russo T, Domingos M, Gloria A, Bartolo P, Ambrosio L (2016) Bone tissue engineering: 3D PCL-based nanocomposite scaffolds with tailored properties. Proc CIRP 49:51–54

    Article  Google Scholar 

  16. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W (2019) 3D printing of HA/PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res 2:196–202

    Google Scholar 

  17. Wang Q, Ye W, Ma Z, Xie W, Zhong L, Wang Y, Rong Q (2021) 3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. Mater Sci Eng C 127:112197

    Article  CAS  Google Scholar 

  18. Iranmanesh P, Ehsani A, Khademi A, Asefnejad A, Shahriari S, Soleimani M, Ghadiri Nejad M, Saber-Samandari S, Khandan A (2022) Application of 3D bioprinters for dental pulp regeneration and tissue engineering (porous architecture). Transp Porous Media 142:265–293

    Article  CAS  Google Scholar 

  19. Karimi M, Asefnejad A, Aflaki D, Surendar A, Baharifar H, Saber-Samandari S, Khandan A, Khan A, Toghraie D (2021) Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J Mater Res Technol 14:3070–3079

    Article  CAS  Google Scholar 

  20. Raisi A, Asefnejad A, Shahali M, Sadat Kazerouni ZA, Kolooshani A, Saber-Samandari S, Kamyab Moghadas B, Khandan A (2020) Preparation, characterization, and antibacterial studies of N, O-carboxymethyl chitosan as a wound dressing for bedsore application. Arch Trauma Res 9:181–188

    Article  Google Scholar 

  21. Foroutan S, Hashemian M, Khosravi M, Ghadiri Nejad M, Asefnejad A, Saber-Samandari S, Khandan A (2021) A porous sodium alginate-CaSiO3 polymer reinforced with graphene nanosheet: fabrication and optimality analysis. Fibers Polym 22:540–549

    Article  CAS  Google Scholar 

  22. Farazin A, Aghadavoudi F, Motififard M, Saber-Samandari S, Khandan A (2021) Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles. J Appl Computat Mech 7:1907–1915

    Google Scholar 

  23. Sohrabian M, Vaseghi M, Khaleghi H, Dehrooyeh S, Kohan MSA (2021) Structural investigation of delicate-geometry fused deposition modeling additive manufacturing scaffolds: experiment and analytics. J Mater Eng Perform 30:6529–6541

    Article  CAS  Google Scholar 

  24. Nara S, Komiya T (1983) Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke 35:407–410

    Article  CAS  Google Scholar 

  25. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohyd Polym 36:277–284

    Article  CAS  Google Scholar 

  26. Chakravarty J, Rabbi MF, Chalivendra V, Ferreira T, Brigham CJ (2020) Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int J Biol Macromol 151:1213–1223

    Article  CAS  PubMed  Google Scholar 

  27. Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T (2019) Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mat Sci Eng C Mater 104:109960

    Article  Google Scholar 

  28. Song X, Ling F, Ma L, Yang C, Chen X (2013) Electrospun hydroxyapatite grafted poly (L-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Compos Sci Technol 79:8–14

    Article  CAS  Google Scholar 

  29. INTERNATIONAL STANDARD, ISO 23317 (2007) Implants for surgery in vitro evaluation for apatite-forming ability of implant materials. International Organization for Standardization, Geneva

    Google Scholar 

  30. Soleymani F, Emadi R, Sadeghzade S, Tavangarian F (2019) Applying baghdadite/PCL/chitosan nanocomposite coating on AZ91 magnesium alloy to improve corrosion behavior, bioactivity, and biodegradability. Coatings 9:789

    Article  CAS  Google Scholar 

  31. Sadeghzade S, Shamoradi F, Emadi R, Tavangarian F (2017) Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method. J Mech Behav Biomed Mater 68:1–7

    Article  CAS  PubMed  Google Scholar 

  32. Abbasian V, Emadi R, Kharaziha M (2020) Biomimetic nylon 6-baghdadite nanocomposite scaffold for bone tissue engineering. Mat Sci Eng C Mater 109:110549

    Article  CAS  Google Scholar 

  33. Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M (2018) Impact modified PLA-hydroxyapatite composites–thermo-mechanical properties. Compos Part A Appl Sci Manuf 107:326–333

    Article  CAS  Google Scholar 

  34. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mu Z, Pei L, Cao D, Guo J, Wei N, Yang L, Hu B (2020) The highly cross-linked poly(ε-caprolactone) as biodegradable implants for prostate cancer treatment-part I: synthesis and in vivo degradation. Polym Degrad Stab 180:109307

    Article  CAS  Google Scholar 

  36. Ghodrati M, Rafiaei SM, Tayebi L (2023) Fabrication and evaluation of PLA/MgAl2O4 scaffolds manufactured through 3D printing method. J Mech Behav Biomed Mater 145:106001

    Article  CAS  PubMed  Google Scholar 

  37. Mohammadi-Zerankeshi M, Alizadeh R (2023) 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications. J Mater Res Technol 22:2440–2446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khodaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Khodaei, M. Baghdadite reinforced polycaprolactone scaffold for bone tissue engineering. Iran Polym J 33, 619–628 (2024). https://doi.org/10.1007/s13726-023-01276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01276-4

Keywords

Navigation