Skip to main content
Log in

Internally functionalized MnO2 nanotubes in modification of thin-film nanocomposite membranes for water and wastewater treatment

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Membrane technologies such as nanofiltration membrane are utilized for treatment of water resources. In this study, MnO2 nanotubes were prepared through hydrothermal process, and then, the inner surface of nanotubes was functionalized through a novel procedure with different polymers (polydopamine and polystyrene) to alter their inner diameter. Then, the neat and modified nanotubes were used in the synthesis of thin-film nanocomposite (TFN) membranes and their performances in terms of permeation and rejection of monovalent (Na+) and divalent (Cu2+) ions were studied. In case of polystyrene inner coated MnO2, the flux increased by 48% compared to TFC membrane that may be related to better dispersion of the nanotubes in PA layer and promoting the permeation through the nanotubes. The nanotubes worked as the channels for water movement through the structure of the membrane and the inner coating makes more restriction for the ions and improves the rejection. Furthermore, the addition of the nanoparticles can reduce the concentration of MPD in the reaction zone and thinner polyamide layer can be expected. In case of polydopamine inner surface-coated MnO2, the flux improved 84% compared to TFN membrane containing unmodified MnO2 that is linked to the affinity between polydopamine and water molecules which facilitates the penetration of water through the nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. Bolaane B, Tema N, Phuthologo B (2021) Barriers and coping strategies of households with no access to drinking water and waterborne sanitation in two low-income neighbourhoods in Botswana. Habitat Int 115:102372

    Article  Google Scholar 

  2. Neale PA, Feliers C, Glauch L, König M, Lecarpentier C, Schlichting R, Thibert S, Escher BI (2020) Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ Sci Water Res Technol 6:2444–2453

    Article  CAS  Google Scholar 

  3. Sousa VS, Ribau Teixeira M (2020) Metal-based engineered nanoparticles in the drinking water treatment systems: a critical review. Sci Total Environ 707:136077

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Tariq A, Rehan ZA, Akram S, Rashid A, Nawab Y (2020) In: Sadrzadeh M, Mohammadi T (eds) Nanocomposite membranes for water and gas separation. Elsevier, Amsterdam

  5. Yadav S, Ibrar I, Samal AK, Altaee A, Déon S, Zhou J, Ghaffour N (2022) Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. J Hazard Mater 421:126744

    Article  CAS  PubMed  Google Scholar 

  6. Yao M, Tijing LD, Naidu G, Kim SH, Matsuyama H, Fane AG, Shon HK (2020) A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 479:114312

    Article  CAS  Google Scholar 

  7. Haresco CKS, Ang MBMY, Doma BT, Huang SH, Lee KR (2021) Performance enhancement of thin-film nanocomposite nanofiltration membranes via embedment of novel polydopamine-sulfobetaine methacrylate nanoparticles. Sep Purif Technol 274:119022

    Article  CAS  Google Scholar 

  8. Rashed AO, Esawi AMK, Ramadan AR (2020) Novel polysulfone/carbon nanotube-polyamide thin film nanocomposite membranes with improved water flux for forward osmosis desalination. ACS Omega 5:14427–14436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akonkwa Mulungulungu G, Mao T, Han K (2022) Two-dimensional graphitic carbon nitride-based membranes for filtration process: progresses and challenges. Chem Eng J 427:130955

    Article  CAS  Google Scholar 

  10. Tian C, Han S, Zhu J, Cao S, Wang J, Li R, Jin Y, Zhang Y, Van der Bruggen B (2022) In situ growth of multifunctional porous organic polymer nanofilms with molecular sieving and catalytic abilities. Chem Eng J 427:130978

    Article  CAS  Google Scholar 

  11. Yadav D, Karki S, Gohain MB, Ingole PG (2023) Development of micropollutants removal process using thin-film nanocomposite membranes prepared by green new vapour-phase interfacial polymerization method. Chem Eng J 472:144940

    Article  CAS  Google Scholar 

  12. Karki S, Ingole PG (2022) Development of polymer-based new high performance thin-film nanocomposite nanofiltration membranes by vapor phase interfacial polymerization for the removal of heavy metal ions. Chem Eng J 446:137303

    Article  CAS  Google Scholar 

  13. Ghanbari M, Emadzadeh D, Lau WJ, Riazi H, Almasi D, Ismail AF (2016) Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination 377:152–162

    Article  CAS  Google Scholar 

  14. Emadzadeh D, Lau W, Rahbari-Sisakht M, Ilbeygi H, Rana D, Matsuura T, Ismail A (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243

    Article  CAS  Google Scholar 

  15. Al-Najar B, Peters CD, Albuflasa H, Hankins NP (2020) Pressure and osmotically driven membrane processes: a review of the benefits and production of nano-enhanced membranes for desalination. Desalination 479:114323

    Article  CAS  Google Scholar 

  16. Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG (2020) Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. J Membr Sci 609:118212

    Article  CAS  Google Scholar 

  17. Pandey G, Tharmavaram M, Rawtani D (2020) In: Mustansar Hussain C (ed) Handbook of functionalized nanomaterials for industrial applications. Elsevier

  18. Zhao DL, Yeung WS, Zhao Q, Chung TS (2020) Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. J Membr Sci 604:118039

    Article  CAS  Google Scholar 

  19. Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C (2019) Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 27:1578–1585

    Article  CAS  Google Scholar 

  20. Zhao Q, Zhao DL, Chung TS (2020) Nanoclays-incorporated thin-film nanocomposite membranes for reverse osmosis desalination. Adv Mater Interfaces 7:1902108

    Article  CAS  Google Scholar 

  21. Rana D, Mandal BM, Bhattacharyya SN (1993) Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer 34:1454–1459

    Article  CAS  Google Scholar 

  22. Rana D, Mandal BM, Bhattacharyya SN (1996) Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer 37:2439–2443

    Article  CAS  Google Scholar 

  23. Xu L, Shan B, Gao C, Xu J (2020) Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J Membr Sci 593:117398

    Article  Google Scholar 

  24. Ji C, Ren H, Yang S (2015) Control of manganese dioxide crystallographic structure in the redox reaction between graphene and permanganate ions and their electrochemical performance. RSC Adv 5:21978–21987

    Article  CAS  ADS  Google Scholar 

  25. Sookhakian M, Ullah H, Mat Teridi MA, Tong GB, Basirun WJ, Alias Y (2020) Boron-doped graphene-supported manganese oxide nanotubes as an efficient non-metal catalyst for the oxygen reduction reaction. Sustain Energy Fuel 4:737–749

    Article  CAS  Google Scholar 

  26. Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK (2019) Regenerable α-MnO2 nanotubes for elemental mercury removal from natural gas. Fuel Proc Technol 193:317–327

    Article  CAS  Google Scholar 

  27. Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H (2018) Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO2 nanotubes. J Environ Sci 64:276–288

    Article  CAS  Google Scholar 

  28. Al Aani S, Haroutounian A, Wright CJ, Hilal N (2018) Thin Film Nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications. Desalination 427:60–74

    Article  CAS  Google Scholar 

  29. Jia L, Zhang X, Zhu J, Cong S, Wang J, Liu J, Zhang Y (2019) Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration. Environ Sci Water Res Technol 5:1412–1422

    Article  CAS  Google Scholar 

  30. Ghanbari M, Emadzadeh D, Lau W, Matsuura T, Ismail A (2015) Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination. RSC Adv 5:21268

    Article  CAS  ADS  Google Scholar 

  31. Pan YH, Zhao QY, Gu L, Wu QY (2017) Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination. Desalination 421:160–168

    Article  CAS  Google Scholar 

  32. Wu H, Sun H, Hong W, Mao L, Liu Y (2017) Improvement of polyamide thin film nanocomposite membrane assisted by tannic acid-Fe(III) functionalized multiwall carbon nanotubes. ACS Appl Mater Interfaces 9:32255–32263

    Article  CAS  PubMed  Google Scholar 

  33. Shah AA, Cho YH, Choi HG, Nam SE, Kim JF, Kim Y, Park YI, Park H (2019) Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J Ind Eng Chem 73:276–285

    Article  CAS  Google Scholar 

  34. Zhao DL, Zhao Q, Chung TS (2021) Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination 516:115230

    Article  CAS  Google Scholar 

  35. Ramokgopa SK, Sikhwivhilu K, Moutloali RM, Moothi K (2021) Process optimisation through response surface methodology for treatment of acid mine drainage using carbon nanotubes-infused thin film nanocomposite membranes. Phys Chem Earth Parts A/B/C 124:103008

    Article  Google Scholar 

  36. Behdarvand F, Valamohammadi E, Tofighy MA, Mohammadi T (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9:104650

    Article  CAS  Google Scholar 

  37. Liu J, Wang Z, Li W, Wang X, Su Y (2023) Graphene quantum dots enhanced ultrathin nanofilms and arginine engineered nanofiltration membranes with ultra-high separation performance. Desalination 547:116232

    Article  CAS  Google Scholar 

  38. Umek P, Gloter A, Pregelj M, Dominko R, Jagodič M, Jagličić Z, Zimina A, Brzhezinskaya M, Potočnik A, Filipič C, Levstik A, Arčon D (2009) Synthesis of 3D hierarchical self-assembled microstructures formed from α-MnO2 nanotubes and their conducting and magnetic properties. J Phys Chem C 113:14798–14803

    Article  CAS  Google Scholar 

  39. Raheem ZH, Sammarraie AMAA (2020) Synthesis of different manganese dioxide nanostructures and studding the enhancement of their electrochemical behavior in zinc-MnO2 rechargeable batteries by doping with copper. AIP Conf Proc 2213:020187

    Article  CAS  Google Scholar 

  40. Du Y, Li G, Zhao L, Ye L, Che C, Liu X, Liu H, Yang X (2020) Core-shell MnO2 nanotubes@nickel-cobalt-zinc hydroxide nanosheets for supercapacitive energy storage. ACS Appl Nano Mater 3:7462–7473

    Article  CAS  Google Scholar 

  41. Ahmed KAM (2016) Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials. J Taibah Univ Sci 10:412–429

    Article  Google Scholar 

  42. Seyedpour SF, Rahimpour A, Najafpour G (2019) Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: a novel approach toward long-lasting biofouling mitigation. J Membr Sci 573:257–269

    Article  CAS  Google Scholar 

  43. Kang Y, Obaid M, Jang J, Kim IS (2019) Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration membrane to enhance permeation and antifouling properties. Desalination 470:114125

    Article  CAS  Google Scholar 

  44. Ren Y, Zhu J, Cong S, Wang J, Van der Bruggen B, Liu J, Zhang Y (2019) High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration. J Membr Sci 585:19–28

    Article  CAS  Google Scholar 

  45. Inurria A, Cay-Durgun P, Rice D, Zhang H, Seo DK, Lind ML, Perreault F (2019) Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: balancing membrane performance and fouling propensity. Desalination 451:139–147

    Article  CAS  Google Scholar 

  46. Abdikheibari S, Lei W, Dumée LF, Milne N, Baskaran K (2018) Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J Mater Chem A 6:12066–12081

    Article  CAS  Google Scholar 

  47. Bakeri G, Fallahnejad Z (2017) Porous polyethersulfone hollow fiber membrane in oily wastewater treatment. Desalin Water Treat 62:57–65

    CAS  Google Scholar 

  48. Guo X, Huang Y, Yu W, Yu X, Han X, Zhai H (2020) Multi-walled carbon nanotubes modified with iron oxide and manganese dioxide (MWCNTs-Fe3O4−MnO2) as a novel adsorbent for the determination of BPA. Microchem J 157:104867

    Article  CAS  Google Scholar 

  49. Jaoude MA, Alhseinat E, Polychronopoulou K, Bharath G, Darawsheh IFF, Anwer S, Baker MA, Hinder SJ, Banat F (2020) Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochim Acta 330:135202

    Article  CAS  Google Scholar 

  50. Chien HW, Chiu TH (2020) Stable N-halamine on polydopamine coating for high antimicrobial efficiency. Euro Polym J 130:109654

    Article  CAS  Google Scholar 

  51. Li L, Yang L, Liao Y, Yu H, Liang Z, Zhang B, Lan X, Luo R, Wang Y (2020) Superhydrophilic versus normal polydopamine coating: a superior and robust platform for synergistic antibacterial and antithrombotic properties. Chem Eng J 402:126196

    Article  CAS  Google Scholar 

  52. Chaudhary AK, Vijayakumar RP (2020) Synthesis of polystyrene/starch/CNT composite and study on its biodegradability. J Polym Res 27:187

    Article  CAS  Google Scholar 

  53. Sarmiento AM, Guzmán HL, Morales G, Romero DE, Pataquiva-Mateus AY (2016) Expanded polystyrene (EPS) and waste cooking oil (WCO): from urban wastes to potential material of construction. Waste Biomass Valoriz 7:1245–1254

    Article  CAS  Google Scholar 

  54. Nikolic V, Velickovic S, Popovic A (2014) Biodegradation of polystyrene-graft-starch copolymers in three different types of soil. Environ Sci Pollut Res 21:9877–9886

    Article  CAS  Google Scholar 

  55. Ali A, Aamir M, Thebo KH, Akhtar J (2020) Laminar graphene oxide membranes towards selective ionic and molecular separations: challenges and progress. Chem Rec 20:344–354

    Article  CAS  PubMed  Google Scholar 

  56. Ge Y, Chen P, Zhang W, Shan Q, Fang Y, Chen N, Yuan Z, Zhang Y, Feng X (2020) Shape-controlled MnO2 as a sulfur host for high performance lithium-sulfur batteries. New J Chem 44:11365–11372

    Article  CAS  Google Scholar 

  57. Zefirov V, Elmanovich I, Levin E, Abramchuk S, Kharitonova EP, Khokhlov AA, Kondratenko M, Gallyamov M (2018) Synthesis of manganese oxide electrocatalysts in supercritical carbon dioxide. J Mater Sci 53:1–14

    Article  Google Scholar 

  58. Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Li JB, Du ZM, Shen ZX (2008) Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J Phys Chem C 112:12594–12598

    Article  CAS  Google Scholar 

  59. Chen C, Xiao G, He Y, Zhong F, Li H, Wu Y, Chen J (2020) Bio-inspired superior barrier self-healing coating: self-assemble of graphene oxide and polydopamine-coated halloysite nanotubes for enhancing corrosion resistance of waterborne epoxy coating. Prog Org Coat 139:105402

    Article  CAS  Google Scholar 

  60. Amini M, Seifi M, Akbari A, Hosseinifard M (2020) Polyamide-zinc oxide-based thin film nanocomposite membranes: towards improved performance for forward osmosis. Polyhedron 179:114362

    Article  Google Scholar 

  61. Seyyed Shahabi S, Azizi N, Vatanpour V, Yousefimehr N (2020) Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination. Sep Purif Technol 235:116134

    Article  CAS  Google Scholar 

  62. Zhang S, Ly QV, Nghiem LD, Wang J, Li J, Hu Y (2020) Optimization and organic fouling behavior of zwitterion-modified thin-film composite polyamide membrane for water reclamation: a comprehensive study. J Membr Sci 596:117748

    Article  CAS  Google Scholar 

  63. Nikbakht Fini M, Zhu J, Van der Bruggen B, Madsen HT, Muff J (2020) Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. J Membr Sci 612:118458

    Article  CAS  Google Scholar 

  64. Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep Purif Technol 154:96–107

    Article  CAS  Google Scholar 

  65. Liu Y, Wang X, Gao X, Zheng J, Wang J, Volodin A, Xie YF, Huang X, Van der Bruggen B, Zhu J (2020) High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration. J Membr Sci 596:117717

    Article  CAS  Google Scholar 

  66. Zhu J, Yuan S, Uliana A, Hou J, Li J, Li X, Tian M, Chen Y, Volodin A, der Bruggen BV (2018) High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine. J Membr Sci 554:97–108

    Article  CAS  Google Scholar 

  67. Jimenez Solomon MF, Bhole Y, Livingston AG (2012) High flux membranes for organic solvent nanofiltration (OSN): interfacial polymerization with solvent activation. J Membr Sci 423–424:371–382

    Article  Google Scholar 

  68. Gholami S, López J, Rezvani A, Vatanpour V, Cortina JL (2020) Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes: rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chem Eng J 384:123348

    Article  CAS  Google Scholar 

  69. Xue SM, Xu ZL, Tang YJ, Ji CH (2016) Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl Mater Interfaces 8:19135–19144

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Benes NE, Lammertink RGH (2015) Visualization and characterization of interfacial polymerization layer formation. Lab Chip 15:575–580

    Article  CAS  PubMed  Google Scholar 

  71. Misdan N, Lau WJ, Ismail AF, Matsuura T, Rana D (2014) Study on the thin film composite poly(piperazine-amide) nanofiltration membrane: impacts of physicochemical properties of substrate on interfacial polymerization formation. Desalination 344:198–205

    Article  CAS  Google Scholar 

  72. Tian M, Wang YN, Wang R (2015) Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination 370:79–86

    Article  CAS  Google Scholar 

  73. Rana D, Matsuura T, Lan CQ (2022) Work needed to force the water-air interface down in the re-entrant structured capillary pore. Desalination 541:116058

    Article  CAS  Google Scholar 

  74. Zarrabi H, Yekavalangi ME, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 394:83–90

    Article  CAS  Google Scholar 

  75. Saito T, Matsushige K, Tanaka K (2002) Chemical treatment and modification of multi-walled carbon nanotubes. Phys B 323:280–283

    Article  CAS  ADS  Google Scholar 

  76. Bandehali S, Parvizian F, Moghadassi AR, Hosseini SM, Shen JN (2020) Fabrication of thin film-PEI nanofiltration membrane with promoted separation performances: Cr, Pb and Cu ions removal from water. J Polym Res 27:94

    Article  CAS  Google Scholar 

  77. Zhou H, Chua MH, Xu J (2019) In: Pielichowski K, Majka TM (eds) polymer composites with functionalized nanoparticles. Elsevier

  78. Tanne N, Xu R, Zhou M, Zhang P, Wang X, Wen X (2019) Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes. Front Environ Sci Eng 13:19

    Article  CAS  Google Scholar 

  79. Yang Q, Su Y, Chi C, Cherian CT, Huang K, Kravets VG, Wang FC, Zhang JC, Pratt A, Grigorenko AN, Guinea F, Geim AK, Nair RR (2017) Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat Mater 16:1198–1202

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C (2020) Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 247:116995

    Article  CAS  Google Scholar 

  81. Echaide-Górriz C, Sorribas S, Téllez C, Coronas J (2016) MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes. RSC Adv 6:90417–90426

    Article  ADS  Google Scholar 

  82. María Arsuaga J, Sotto A, del Rosario G, Martínez A, Molina S, Teli SB, de Abajo J (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141

    Article  Google Scholar 

  83. Li H, Shi W, Zhang H, Zhou R, Qin X (2020) Preparation of internally pressurized polyamide thin-film composite hollow fiber nanofiltration membrane with high ions selectivity by a facile coating method. Prog Org Coat 139:105456

    Article  CAS  Google Scholar 

  84. Goh K, Setiawan L, Wei L, Jiang W, Wang R, Chen Y (2013) Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J Membr Sci 446:244–254

    Article  CAS  Google Scholar 

  85. Jimenez Solomon MF, Bhole Y, Livingston AG (2013) High flux hydrophobic membranes for organic solvent nanofiltration (OSN): interfacial polymerization, surface modification and solvent activation. J Membr Sci 434:193–203

    Article  CAS  Google Scholar 

  86. Jun B-M, Cho J, Jang A, Chon K, Westerhoff P, Yoon Y, Rho H (2020) Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes. Sep Purif Technol 247:117026

    Article  CAS  Google Scholar 

  87. Peydayesh M, Mohammadi T, Nikouzad SK (2020) A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci 611:118205

    Article  CAS  Google Scholar 

  88. Saeedi-Jurkuyeh A, Jafari AJ, Kalantary RR, Esrafili A (2020) A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. React Funct Polym 146:104397

    Article  CAS  Google Scholar 

  89. Mu T, Zhang HZ, Sun JY, Xu ZL (2020) Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal. Sep Purif Technol 248:117133

    Article  CAS  Google Scholar 

  90. Hu R, He Y, Zhang C, Zhang R, Li J, Zhu H (2017) Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation. J Mater Chem A 5:25632–25640

    Article  CAS  Google Scholar 

  91. Wu H, Tang B, Wu P (2010) MWNTs/polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity. J Phys Chem C 114:16395–16400

    Article  CAS  Google Scholar 

  92. Pino-Soto L, Schwarz A, Vargas C, Saravia F, Horn H, Bórquez R (2021) Influence of multivalent-electrolyte metal solutions on the superficial properties and performance of a polyamide nanofiltration membrane. Sep Purif Technol 272:118846

    Article  CAS  Google Scholar 

  93. Shao F, Su X, Shen X, Ren S, Wang H, Yi Z, Xu C, Yu L, Dong L (2021) Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Sep Purif Technol 254:117586

    Article  CAS  Google Scholar 

  94. Liu Y, Bai L, Zhu X, Xu D, Li G, Liang H, Wiesner MR (2021) The role of carboxylated cellulose nanocrystals placement in the performance of thin-film composite (TFC) membrane. J Membr Sci 617:118581

    Article  CAS  Google Scholar 

  95. Liu Y, Tu W, Chen M, Ma L, Yang B, Liang Q, Chen Y (2018) A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chem Eng J 336:263–277

    Article  CAS  Google Scholar 

  96. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  97. Méndez-Vilas A, Bruque JM, González-Martín ML (2007) Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies: application to a biomaterial surface. Ultramicroscopy 107:617–625

    Article  PubMed  Google Scholar 

  98. Xiao S, Huo X, Tong Y, Cheng C, Yu S, Tan X (2021) Improvement of thin-film nanocomposite (TFN) membrane performance by CAU-1 with low charge and small size. Sep Purif Technol 274:118467

    Article  CAS  Google Scholar 

  99. Shakeri A, Mighani H, Salari N, Salehi H (2019) Surface modification of forward osmosis membrane using polyoxometalate based open frameworks for hydrophilicity and water flux improvement. J Water Proc Eng 29:100762

    Article  Google Scholar 

  100. Mahdavi H, Rahimi A (2018) Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: towards improved anti-fouling performance for reverse osmosis. Desalination 433:94–107

    Article  CAS  Google Scholar 

  101. He M, Wang L, Lv Y, Wang X, Zhu J, Zhang Y, Liu T (2020) Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem Eng J 389:124452

    Article  CAS  Google Scholar 

  102. Goswami R, Gogoi M, Borah A, Sarmah H, Ingole PG, Hazarika S (2021) Functionalized activated carbon and carbon nanotube hybrid membrane with enhanced antifouling activity for removal of cationic dyes from aqueous solution. Environ Nanotechnol Monit Manag 16:100492

    CAS  Google Scholar 

  103. Su P, Jia M, Huang J, Li W, Tang CY (2021) Multilayer assembly of thin-film nanocomposite membranes with enhanced NaCl and antibiotic rejection. Desalination 517:115261

    Article  CAS  Google Scholar 

  104. Rezaei MT, Valizadeh S, Naji L (2021) Influences of sulfonation level on the nanofiltration performance of sulfonated graphene oxide polyamide nanocomposite membranes. Thin Solid Films 728:138688

    Article  CAS  ADS  Google Scholar 

  105. Lin Y, Shen Q, Kawabata Y, Segawa J, Cao X, Guan K, Istirokhatun T, Yoshioka T, Matsuyama H (2021) Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chem Eng J 420:127602

    Article  CAS  Google Scholar 

  106. Zhang HZ, Sun JY, Zhang ZL, Xu ZL (2021) Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants. Sep Purif Technol 258:118069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Babol Noshirvani University of Technology of Iran through research under Grant No. (BNUT/955150012/97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Bakeri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahnejad, Z., Bakeri, G. & Fauzi Ismail, A. Internally functionalized MnO2 nanotubes in modification of thin-film nanocomposite membranes for water and wastewater treatment. Iran Polym J 33, 493–509 (2024). https://doi.org/10.1007/s13726-023-01264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01264-8

Keywords

Navigation