Skip to main content

Advertisement

Log in

Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: a review on fair inclusion in amputees

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Amputation is a surgical operation to remove a part or limb from the body due to some major illness, birth defect, accidents, vascular disease, surgery, etc. The number of amputee patients is increasing day by day all over the world and in most cases they cannot afford the imported legs because these legs are expensive and heavy. Hence the present review article explains the development of light weight and cost-effective biocomposites for prosthesis limb applications. The details of the performance of exiting biomaterials for knee prostheses application have been explained, and their advantages, disadvantages, and limitation of their uses have been analyzed. To explore patients’ satisfaction, design analysis of prosthetic limb components has been discussed to provide better suitability, stability, and comfortability for stable movement of adaptive legs. This review also discusses the factors that affect the performance of the prosthetic limb. Fiber-reinforced composites are the best suited and promising biomaterials for prosthetic limb application due to greater flexible design and lighter weight that provide higher specific strength and stiffness compared to conventional biomaterials. Due to the rapid increase in patients, the availability and cost of biomaterials are the major issues and problem in achieving cost-effective prosthesis for weaker people as well as for short-term usages. Therefore, to meet the current challenge, naturally derived biocomposites are the best promising and suited biomaterials for developing prosthesis sockets due to their availability, lighter weight, more cost-effective, more biocompatible, and biostable compared to other existing materials, providing good specific strength and stiffness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McGimpsey G, Bradford TC (2008) Limb prosthetics services and devices. Bioengineering Institute Center for Neuroprosthetics: Worcester Polytechnic Institution 1–35

  2. Kumar PK, Charan M, Kanagaraj S (2017) Trends and challenges in lower limb prosthesis. IEEE Potent 36:19–23

    Article  Google Scholar 

  3. Mubarak AJ, Rashid AM, Wahab AA, Seng GH, Ramlee MH (2021) Customized designs and biomechanical analysis of transtibial prosthetic Leg. J Phys Conf Ser 2071:012014

    Article  Google Scholar 

  4. Rajťúková V, Michalíková M, Bednarčíková L, Balogová A, Živčák J (2014) Biomechanics of lower limb prostheses. Proced Eng 96:382–391

    Article  Google Scholar 

  5. Sengeh DM, Herr HA (2013) Variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J Prosthet Orthot 25:129–137

    Article  Google Scholar 

  6. Dyer BT, Noroozi S, Redwood S, Sewell P (2010) The design of lower-limb sports prostheses: fair inclusion in disability sport. Disabil Soc 25:593–602

    Article  Google Scholar 

  7. Naylor A (2014) Can wood be used as a bio-mechanical substitute for bone during evaluation of surgical machining tools? BioResources 9:5778–5781

    Article  CAS  Google Scholar 

  8. Newaz G, Mayeed M, Rasul A (2017) Characterization of balsa wood mechanical properties required for continuum damage mechanics analysis. Proc Inst Mech Eng L 230:206–218

    Google Scholar 

  9. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D (2017) Metallic biomaterials: current challenges and opportunities. Materials 10:884–892

    Article  PubMed Central  CAS  Google Scholar 

  10. Zindani D, Kumar K, Davim JP (2019) Metallic biomaterials: a review. Mech Behav Biomater 1:83–99

    Article  Google Scholar 

  11. Ali S, Rani AM, Baig Z, Ahmed SW, Hussain G, Subramaniam K, Hastuty S, Rao TV (2020) Biocompatibility and corrosion resistance of metallic biomaterials. Corros Rev 38:381–402

    Article  CAS  Google Scholar 

  12. Joshi T, Sharma R, Mittal VK, Gupta V (2021) Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Mater Today Proc 43:105–111

    Article  CAS  Google Scholar 

  13. Vallittu PK (2018) An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater Odontol Scand 4:44–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Türk DA, Einarsson H, Lecomte C, Meboldt M (2018) Design and manufacturing of high-performance prostheses with additive manufacturing and fiber-reinforced polymers. Prod Eng 12:203–213

    Article  Google Scholar 

  15. Egbo MK (2021) A fundamental review on composite materials and some of their applications in biomedical engineering. J King Saud Univ Eng Sci 33:557–568

    Google Scholar 

  16. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24

    Article  CAS  Google Scholar 

  17. Pandey JK, Nagarajan V, Mohanty AK, Misra M (2015) Commercial potential and competitiveness of natural fiber composites. Biocomposites 2015:1–15

    Google Scholar 

  18. Cochrane H, Orsi K, Reilly P (2001) Lower limb amputation. Prosthet Orthot Int 25:21–28

    Article  CAS  PubMed  Google Scholar 

  19. Poonsiri J, Dijkstra PU, Geertzen JH (2021) Fitting transtibial and transfemoral prostheses in persons with a severe flexion contracture: problems and solutions–a systematic review. Disabil Rehabil 24:1–11

    Google Scholar 

  20. Hanafi MH, Kassim NK, Yang CT (2017) Improvement of knee flexion deformity in transtibial prosthesis user. Int Medical J 24:343–345

    Google Scholar 

  21. Carroll K (2006) Lower extremity socket design and suspension. Phys Med Rehabil Clin N AM17:31–48

    Article  Google Scholar 

  22. Kelly BM, Spires MC, Restrepo JA (2007) Orthotic and prosthetic prescriptions for today and tomorrow. Phys Med Rehabil Clin N AM 18:185–858

    Article  Google Scholar 

  23. Irfa’i MA, Ismail R, Ganda AN, (2021) Effect of the orientation carbon-glass fiber reinforced polyester composite on bending strength for runner foot prosthesis applications. Mater Sci Eng:IOP Conf Series 1034:012147

    Google Scholar 

  24. Papas PV, Cushner FD, Scuderi GR (2018) The history of total knee arthroplasty. Tech Orthop 33:2–6

    Article  Google Scholar 

  25. Powell SK, Cruz RL, Ross MT, Woodruff MA (2020) Past, present, and future of soft-tissue prosthetics: advanced polymers and advanced manufacturing. Adv Mater 32:1–21

    Article  CAS  Google Scholar 

  26. Estillore JV, Dungo CA, Guzman KN, Maniaul JM, Magdaluyo E Jr (2021) Optimal material selection study of prosthetic socket and pylon tube in transtibial prosthesis fabrication. Eng Res Exp 3:025030

    Article  Google Scholar 

  27. Bîrcă A, Gherasim O, Grumezescu V, Grumezescu AM (2019) Introduction in thermoplastic and thermosetting polymers. Mater Biomed Eng 2019:1–28

    Google Scholar 

  28. Me RC, Ibrahim R, Tahir PM (2012) Natural based biocomposite material for prosthetic socket fabrication. ALAM CIPTA. Int J Sustain Trop Des Res Pract 5:27–34

    Google Scholar 

  29. Qiang Fu, Ke W (2012) Balancing toughness and strength in a polymer blend. Soc Plast Eng (SPE) 10:1002

    Google Scholar 

  30. Balakumaran V, Alagirusamy R, Kalyanasundaram D (2021) Epoxy based sandwich composite using three-dimensional integrally woven fabric as core strengthened with additional carbon face-sheets. J Mech Behav Biomed Mater 116:104317

    Article  CAS  PubMed  Google Scholar 

  31. Strike S, Hillery M (2000) The design and testing of composite lower limb prosthesis. Proc Inst Mech Eng H 214:603–614

    Article  CAS  PubMed  Google Scholar 

  32. Sidhu HJS, Kumar S (2019) Design and fabrication of prosthetic leg. J Compos Theory 9:973–981

    Google Scholar 

  33. Oleiwi JK, Hadi AN (2018) Experimental and numerical investigation of lower limb prosthetic foot made from composite polymer blends. Int J Mech Prod Eng Res Dev 8:1319–1330

    Google Scholar 

  34. Jweeg MJ, Hammood AS, Al-Waily M (2012) Experimental and theoretical studies of mechanical properties for reinforcement fiber types of composite materials. Int J Mech Prod Eng Res Dev 12:62–75

    Google Scholar 

  35. Jweeg MJ, Resan KK, Tarig M (2012) Study of fatigue creep interaction in a below knee prosthetic socket. ASME Int Mech Eng 2012:9–15

    Google Scholar 

  36. Campbell AI, Sexton S, Schaschke CJ, Kinsman H, McLaughlin B, Boyle M (2012) Prosthetic limb sockets from plant-based composite materials. Prosthet Orthot Int 36:181–189

    Article  PubMed  Google Scholar 

  37. Manohar RN (2016) Study on use of natural fiber composites in prosthetic. Tech Rep BIT-Pilani 1–21

  38. Kumar S, Zindani D, Bhowmik S (2020) Investigation of mechanical and viscoelastic properties of flax-and ramie-reinforced green composites for orthopedic implants. J Mater Eng Perform 29:3161–3171

    Article  CAS  Google Scholar 

  39. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A 35:371–376

    Article  CAS  Google Scholar 

  40. Patel M, Bastioli C, Marini L, Würdinger E (2005) Life-cycle assessment of bio-based polymers and natural fiber composites. Biopolym Online 10:1–10

    Google Scholar 

  41. Vivekanandhan S, Zarrinbakhsh N, Misra M, Mohanty AK (2013) Coproducts of biofuel industries in value-added biomaterials uses: a move towards a sustainable bioeconomy. Liq Gas Solid Biofuels. https://doi.org/10.5772/55382

    Article  Google Scholar 

  42. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44:120–127

    Article  CAS  Google Scholar 

  43. Carus M, Eder A, Dammer L, Korte H, Scholz L, Essel R, Breitmayer E, Barth M (2015) Wood-plastic composites (WPC) and natural fibre composites (NFC). NovaInst Hürth Germany 2015:16

    Google Scholar 

  44. Lamontagne ND (2013) New natural-fiber composites find their roles: switchgrass, peat, microcellulose… the field’s expanding for lightweight biocomposites. Plast Eng 69:22–26

    Article  Google Scholar 

  45. Shahar FS, Sultan MT, Shah AU, Safri SN (2021) Natural fibre for prosthetic and orthotic applications—a review. Struct Health Monit System Synth Hybrid Nat Fiber Compos 12:51–70

    Google Scholar 

  46. Colombo G, Filippi S, Rizzi C, Rotini F (2010) A new design paradigm for the development of custom-fifit soft sockets for lower limb prostheses. Comput Ind Eng 6:513–523

    Article  Google Scholar 

  47. Andrysek J (2010) Lower-limb prosthetic technologies in the developing world: a review of literature from 1994–2010. Prosthet Orthot Int 34:378–398

    Article  PubMed  Google Scholar 

  48. Kobayashi T, Orendurff MS, Hunt G, Gao F, LeCursi N, Lincoln LS, Foreman KB (2019) The effects of alignment of an articulated ankle-foot orthosis on lower limb joint kinematics and kinetics during gait in individuals post-stroke. J Biomech 83:57–64

    Article  PubMed  Google Scholar 

  49. Weerakkody TH, Lalitharatne TD, Gopura RA (2017) Adaptive foot in lower-limb prostheses. J Robot Surg 2017:1–15

    Google Scholar 

  50. Eilenberg MF, Geyer H, Herr H (2010) Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehab Eng 18:164–173

    Article  Google Scholar 

  51. Friesen J, Smith JR, Pianykh O (2017) Prosthetic foot. US20170135828 A1

  52. Park JY, Jung HG (2016) Diabetic foot: ulcer, infection, ischemic gangrene. Foot Ankle Disorders 2016:555–584

    Article  Google Scholar 

  53. Safari R (2020) Lower limb prosthetic interfaces: clinical and technological advancement and potential future direction. Prosthet Orthot Int 44:384–401

    Article  PubMed  Google Scholar 

  54. Agarwal AK (2013) Essentials of prosthetics and orthotics. Jaypee Brothers Publishers, New Delhi

    Book  Google Scholar 

  55. Petrini FM, Valle G, Bumbasirevic M, Barberi F, Bortolotti D, Cvancara P, Hiairrassary A, Mijovic P, Sverrisson AÖ, Pedrocchi A, Divoux JL (2019) Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci Trans Med 11:1–14

    Article  Google Scholar 

  56. Banga HK, Belokar RM, Kalra P, Madan R (2016) Fabrication and stress analysis of kid’s ankle foot orthosis with additive manufacturing. Manag J Mech Eng 7:1–7

    Google Scholar 

  57. Newaz G, Mayeed M, Rasul A (2016) Characterization of balsa wood mechanical properties required for continuum damage mechanics analysis. Proc Inst Mech Eng L 230:206–218

    Google Scholar 

  58. Pertiwi YA, Ishiguri F, Aiso H, Ohshima J, Yokota S (2017) Wood properties of 7-year-old balsa (Ochroma pyramidale) planted in East Java. Int Wood Prod J 8:227–232

    Article  Google Scholar 

  59. Sherk KA (2008) The development and use of a floating T-strap on a double upright metal AFO to correct coronal-plane pathologies and reduce skin shear. J Prosthet Orthot 20:24–26

    Article  Google Scholar 

  60. Zaman HA, Sharif S, Idris MH, Kamarudin A (2015) Metallic biomaterials for medical implant applications: a review. Appl Mech Mater 735:19–25

    Article  Google Scholar 

  61. Hariharan K, Sastry CC, Padmanaban M, Gideon Ganesh M (2020) Experimental investigation of bioceramic (Hydroxyapatite and Yttrium stabilized zirconia) composite on Ti6Al7Nb alloy for medical implants. Mater Manuf Process 35:521–530

    Article  CAS  Google Scholar 

  62. Luo B, Wang X, Zhao Q, Li L (2015) Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos Sci Technol 112:1–7

    Article  CAS  Google Scholar 

  63. Gouda K, Bhowmik S, Das B (2020) Thermomechanical behavior of graphene nanoplatelets and bamboo micro filler incorporated epoxy hybrid composites. Mater Res Exp 7:015328

    Article  CAS  Google Scholar 

  64. Artola A, Gurruchaga M, Va´zquez B, San Roma´n J, Gon˜i I, (2003) Elimination of barium sulphate from acrylic bone cements:use of two iodine-containing monomers. Biomaterials 24:4071–4080

    Article  CAS  PubMed  Google Scholar 

  65. Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR (1995) Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res 319:28–40

    Google Scholar 

  66. Ciccone W, Motz C, Bentley C, Tasto J (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. Am Acad Orthop Surg 9:280–288

    Article  Google Scholar 

  67. Vaccaro AR, Singh K, Haid R, Kitchel S, Wuisman P, Taylor W, Branch C, Grafin S (2003) The use of bioabsorbable implants in the spine. Spine J3:227–237

    Article  Google Scholar 

  68. Do KH, Song JC, Kim JH, Jung GS, Seo SW, Kim YK, Son SM, Jang SH (2014) Effect of a hybrid ankle foot orthosis made of polypropylene and fabric in chronic hemiparetic stroke patients. Am J Phys Med Rehabil 93:130–137

    Article  PubMed  Google Scholar 

  69. Munguia, J, Dalgarno K (2013) Ankle foot orthotics optimization by means of composite reinforcement of free-form structures. 24th International Solid Freeform Fabrication Symposium, University of Texas at Austin

  70. Kobayashi T, Orendurff MS, Hunt G, Lincoln LS, Gao F, LeCursi N, Foreman KB (2017) An articulated ankle–foot orthosis with adjustable plantarflexion resistance, dorsiflexion resistance and alignment: a pilot study on mechanical properties and effects on stroke hemiparetic gait. Med Eng Phys 44:94–101

    Article  PubMed Central  PubMed  Google Scholar 

  71. Banga HK, Belokar RM, Kalra P, Kumar R (2018) Fabrication and stress analysis of ankle foot orthosis with additive manufacturing. Rapid Prototyp J 24:301–312

    Article  Google Scholar 

  72. Hadi AN, Oleiwi JK (2015) Improving tensile strength of polymer blends as prosthetic foot material reinforcement by carbon fiber. J Mater Sci Eng 4:2169–2191

    Google Scholar 

  73. Zhao XW, Zang CG, Sun YL, Zhang YL, Wen YQ, Jiao QJ (2018) Effect of hybrid hollow microspheres on thermal insulation performance and mechanical properties of silicone rubber composites. J Appl Polym Sci 135:46025

    Article  CAS  Google Scholar 

  74. Salih SI, Oleiwi JK, Ali HM (2019) Modification of silicone rubber by added PMMA and natural nanoparticle used for maxillofacial prosthesis applications. ARPNJ Eng Appl Sci 14:781–791

    CAS  Google Scholar 

  75. XiaoHui S, Wei L, PingHui S, QingYong S, QingSong W, YuSheng S, Kai L, WenGuang L (2015) Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manuf Technol 81:15–25

    Article  Google Scholar 

  76. Elsner JJ, McKeon BP (2017) Orthopedic application of polycarbonate urethanes: a review. Tech Orthop 32:132–140

    Article  Google Scholar 

  77. Scharfenberg M, Hilf J, Frey H (2018) Functional polycarbonates from carbon dioxide and tailored epoxide monomers: degradable materials and their application potential. Adv Funct Mater 28:1704302

    Article  CAS  Google Scholar 

  78. Pascual G, Mesa-Ciller C, Rodríguez M, Pérez-Köhler B, Gómez-Gil V, Fernández-Gutiérrez M, San Román J, Bellón JM (2018) Pre-clinical assay of the tissue integration and mechanical adhesion of several types of cyanoacrylate adhesives in the fixation of lightweight polypropylene meshes for abdominal hernia repair. PLoS ONE 13:0206515

    Article  Google Scholar 

  79. Gopanna A, Rajan KP, Thomas SP, Chavali M (2019) Polyethylene and polypropylene matrix composites for biomedical applications. Mater Biomed Eng 2019:175–216

    Article  Google Scholar 

  80. Sattar MM, Patel M, Alani A (2017) Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry. Brit Dent J 222:151–158

    Article  CAS  PubMed  Google Scholar 

  81. Kameda T, Ohkuma K, Oka S (2019) Polytetrafluoroethylene (PTFE): a resin material for possible use in dental prostheses and devices. Dent Mater J38:136–142

    Article  CAS  Google Scholar 

  82. Chicaiza R, Donoso C, Quiroz F (2020) Development of a composite material based on polymers polydimethylsiloxane and polytetrafluoroethylene use in human prosthetic coatings. Key Eng Mater 834:177–182

    Article  Google Scholar 

  83. Khatoon H, Ahmad S (2018) Polyurethane: a versatile scaffold for biomedical applications. J Biosci Bioeng 2:2–4

    Google Scholar 

  84. Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG (2020) An insight into the structural diversity and clinical applicability of polyurethanes in biomedicine. Polymers 12:1197

    Article  CAS  PubMed Central  Google Scholar 

  85. Moghadam SG, Parsimehr H, Ershad-Langroudi A (2021) Polyurethanes for biomedical applications. Polyureth Chem 1380:363–392

    CAS  Google Scholar 

  86. Arcilla FN, Garcia AK, Sarthou MA, Lugue AM, Rubiano AD (2019) Recycled plastics: an alternative material for prosthetic check socket fabrication. UER 8:115–131

    Google Scholar 

  87. Borjali A, Monson K, Raeymaekers B (2019) Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: deriving a data-driven model using machine learning methods. Tribol Int 133:101–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Shankar S, Nithyaprakash R, Santhosh BR (2021) Short term tribological behavior of ceramic and polyethylene biomaterials for hip prosthesis. Mater Test 63:470–473

    Article  CAS  Google Scholar 

  89. Nguyen TN, Rangel A, Grainger DW, Migonney V (2021) Influence of spin finish on degradation, functionalization and long-term storage of polyethylene terephthalate fabrics dedicated to ligament prostheses. Sci Rep 11:1–9

    CAS  Google Scholar 

  90. Silva GG, da Costa Valente ML, Bachmann L, Dos Reis AC (2019) Use of polyethylene terephthalate as a prosthetic component in the prosthesis on an overdenture implant. Mater Sci Eng C 19:1341–1349

    Article  CAS  Google Scholar 

  91. Hassan MH, Omar AM, Daskalakis E, Hou Y, Huang B, Strashnov I, Grieve BD, Bártolo P (2020) The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers 12:3045

    Article  CAS  PubMed Central  Google Scholar 

  92. Mete JJ, Dixit S, Deshpande S, Aghav S (2017) Rehabilitation of patient with maxillary defect using polyacetal resin obturator prostheses: a case report. J Dent Med Sci 16:75–78

    Google Scholar 

  93. Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D (2019) Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomater Sci 7:3238–3248

    Article  CAS  PubMed  Google Scholar 

  94. Thangudu S (2020) Next generation nanomaterials: smart nanomaterials, significance, and biomedical applications. Appl Nanomater Human Health 2020:287–312

    Article  Google Scholar 

  95. Zhang T, Nazarov R, Popov AP, Demchenko PS, Bykov AV, Grigorev RO, Kuzikova AV, Soboleva VY, Zykov DV, Meglinski IV, Khodzitskiy MK (2020) Development of oral cancer tissue-mimicking phantom based on polyvinyl chloride plastisol and graphite for terahertz frequencies. J Biomed Opt 25:123002

    Article  CAS  PubMed Central  Google Scholar 

  96. Ranjan N (2021) Chitosan with PVC polymer for biomedical applications: a bibliometric analysis. Mater Today Proc 2021:2214–7853

    Google Scholar 

  97. Serbanescu OS, Voicu SI, Thakur VK (2020) Polysulfone functionalized membranes: properties and challenges. Mater Today Chem 17:100302

    Article  CAS  Google Scholar 

  98. Moghanian A, Pazhouheshgar A, Ghorbanoghli A (2021) Nonlinear viscoelastic modeling of synthesized silicate-based bioactive glass/polysulfone composite: theory and medical applications. SILICON 2021:1–10

    Google Scholar 

  99. Sa Y, Yang F, Wang Y, Wolke JG, Jansen JA (2018) Modifications of poly (methyl methacrylate) cement for application in orthopedic surgery. Cutting-Edge Enabl Technol Regen Med 2018:119–134

    Article  CAS  Google Scholar 

  100. Simões MC, Cragg SM, Barbu E, De Sousa FB (2019) The potential of electrospun poly (methyl methacrylate)/polycaprolactone core-sheath fibers for drug delivery applications. J Mater Sci 54:5712–5725

    Article  CAS  Google Scholar 

  101. Chrysafi I, Kontonasaki E, Anastasiou AD, Patsiaoura D, Papadopoulou L, Vourlias G, Vouvoudi E, Bikiaris D (2020) Mechanical and thermal properties of PMMA resin composites for interim fixed prostheses reinforced with calcium β-pyrophosphate. J Mech Behav Biomed Mater 112:104094

    Article  CAS  PubMed  Google Scholar 

  102. Singh S, Prakash C, Ramakrishna S (2019) 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J 114:234–248

    Article  CAS  Google Scholar 

  103. Yu YH, Liu SJ (2021) Polyetheretherketone for orthopedic applications: a review. Curr Opin Chem Eng 32:100687

    Article  Google Scholar 

  104. Verma S, Sharma N, Kango S, Sharma S (2021) Developments of PEEK (polyetheretherketone) as a biomedical material: a focused review. Eur Polym J 147:110295

    Article  CAS  Google Scholar 

  105. Yan Y, Sencadas V, Jin T, Huang X, Chen J, Wei D, Jiang Z (2017) Tailoring the wettability and mechanical properties of electrospun poly (l-lactic acid)-poly (glycerol sebacate) core-shell membranes for biomedical applications. J Colloid Interface Sci 508:87–94

    Article  CAS  PubMed  Google Scholar 

  106. Muniyandi P, Palaninathan V, Veeranarayanan S, Ukai T, Maekawa T, Hanajiri T, Mohamed MS (2020) ECM mimetic electrospun porous poly (l-lactic acid)(PLLA) scaffolds as potential substrates for cardiac tissue engineering. Polymers 12:451

    Article  CAS  PubMed Central  Google Scholar 

  107. Karava V, Siamidi A, Vlachou M, Christodoulou E, Zamboulis A, Bikiaris DN, Kyritsis A, Klonos PA (2021) Block copolymers based on poly (butylene adipate) and poly (l-lactic acid) for biomedical applications: synthesis, structure and thermodynamical studies. Soft Matter 17:2439–2453

    Article  CAS  PubMed  Google Scholar 

  108. Macuvele DL, Nones J, Matsinhe JV, Lima MM, Soares C, Fiori MA, Riella HG (2017) Advances in ultra-high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: a brief review. Mater Sci Eng C76:1248–1262

    Article  CAS  Google Scholar 

  109. Ren Y, Zhang ZY, Lan RT, Xu L, Gao Y, Zhao B, Xu JZ, Gul RM, Li ZM (2019) Enhanced oxidation stability of highly cross-linked ultrahigh molecular weight polyethylene by tea polyphenols for total joint implants. Mater Sci Eng C94:211–219

    Article  CAS  Google Scholar 

  110. Hussain M, Naqvi RA, Abbas N, Khan SM, Nawaz S, Hussain A, Zahra N, Khalid MW (2020) Ultra-high-molecular-weight-polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers 12:323

    Article  CAS  PubMed Central  Google Scholar 

  111. Jia Z, Yang C, Jiao J, Li X, Zhu D, Yang Y, Yang J, Che Y, Lu Y, Feng X (2017) Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications. Biomed Mater 12:045004

    Article  PubMed  Google Scholar 

  112. Sankar GG, Murthy PS, Das A, Sathya S, Nankar R, Venugopalan VP, Doble M (2017) Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications. J Biomed Mater Res Part B 105:1075–1082

    Article  CAS  Google Scholar 

  113. Oldfrey B, Tchorzewska A, Jackson R, Croysdale M, Loureiro R, Holloway C, Miodownik M (2021) Additive manufacturing techniques for smart prosthetic liners. Med Eng Phys 87:45–55

    Article  CAS  PubMed  Google Scholar 

  114. Pan Y, Zhou X, Wei Y, Zhang Q, Wang T, Zhu M, Li W, Huang R, Liu R, Chen J, Fan G (2017) Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep 7:3615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Zhou X, Pan Y, Liu R, Luo X, Zeng X, Zhi D, Li J, Cheng Q, Huang Z, Zhang H, Wang K (2019) Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. J Bioact Compat Polym 34:115–130

    Article  CAS  Google Scholar 

  116. Martins JA, Lach AA, Morris HL, Carr AJ, Mouthuy PA (2020) Polydioxanone implants: a systematic review on safety and performance in patients. J Biomater Appl 34:902–916

    Article  PubMed  Google Scholar 

  117. Mirbagheri M, Mohebbi-Kalhori D, Jirofti N (2017) Evaluation of mechanical properties and medical applications of polycaprolactone small diameter artificial blood vessels. Int J Basic Sci Med 2:58–70

    Article  Google Scholar 

  118. Prasad A, Kandasubramanian B (2019) Fused deposition processing polycaprolactone of composites for biomedical applications. Polym Plast Tech Mater 58:1365–1398

    CAS  Google Scholar 

  119. Talebi A, Labbaf S, Karimzadeh F (2020) Polycaprolactone-chitosan-polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications. Polym Compos 41:645–652

    Article  CAS  Google Scholar 

  120. Göktürk E, Erdal H (2017) Biomedical applications of polyglycolic acid (PGA). Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21:1237–1244

    Google Scholar 

  121. Macha IJ, Karacan I, Ben-Nissan B, Cazalbou S, Müller WH (2019) Development of antimicrobial composite coatings for drug release in dental, orthopaedic and neural prostheses applications. SN Appl Sci 1:1–10

    Article  CAS  Google Scholar 

  122. Budak K, Sogut O, Sezer UA (2020) A review on synthesis and biomedical applications of polyglycolic acid. J Polym Res 27:1–9

    Article  CAS  Google Scholar 

  123. Forintos N, Czigany T (2019) Multifunctional application of carbon fiber reinforced polymer composites: electrical properties of the reinforcing carbon fibers: a short review. Compos B 162:331–343

    Article  CAS  Google Scholar 

  124. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11:1667–1672

    Article  CAS  PubMed Central  Google Scholar 

  125. Alsubari S, Zuhri MY, Sapuan SM, Ishak MR, Ilyas RA, Asyraf MR (2021) Potential of natural fiber reinforced polymer composites in sandwich structures: a review on its mechanical properties. Polymers 13:423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Saha A, Kumar S, Zindani D, Bhowmik S (2021) Micro-mechanical analysis of the pineapple-reinforced polymeric composite by the inclusion of pineapple leaf particulates. Proc Inst Mech Eng L 235:1112–1127

    CAS  Google Scholar 

  127. Demircan G, KISA M, Özen M, (2017) Mechanical properties of rosin-based bio-epoxy Resin. J Sci Eng 5:387–393

    Google Scholar 

  128. Demircan G, Kisa M, Özen M, Açikgöz A, Aktaş B, Ali Kurt M (2020) A bio-based epoxy resin from rosin powder with improved mechanical performance. Emerg Mater Res 9:1076–1081

    Article  Google Scholar 

  129. Zindani D, Kumar S, Maity SR, Bhowmik S (2021) Mechanical characterization of bio-epoxy green composites derived from sodium bicarbonate treated Punica granatum short fiber agro-waste. J Polym Environ 29:143–155

    Article  CAS  Google Scholar 

  130. Mostafa NH, Ismarrubie ZN, Sapuan SM, Sultan MT (2017) Fibre prestressed composites: theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms. Compos Struct 159:410–423

    Article  Google Scholar 

  131. Coombes AG, Greenwood CD, Shorter JJ (1996) Plastic materials for external prostheses and orthoses. Human Biomater Appl 1996:215–255

    Article  Google Scholar 

  132. Phillips VL (1985) Composite prosthetic foot and leg. US Patent 4,547,913

  133. Versluys R, Beyl P, Van Damme M, Desomer A, Van Ham R, Lefeber D (2009) Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics. Disab Rehab Assist Technol 4:65–75

    Article  Google Scholar 

  134. Nolan L (2008) Carbon fibre prostheses and running in amputees: a review. Foot Ankle Surg 14:125–129

    Article  PubMed  Google Scholar 

  135. South BJ, Fey NP, Bosker G, Neptune RR (2010) Manufacture of energy storage and return prosthetic feet using selective laser sintering. J Biomech Eng 132:015001

    Article  PubMed  Google Scholar 

  136. Scholz MS, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD, Gilbert ME, Muflahi SA, Pernice MF, Rae SI, Trevarthen JA (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71:1791–1803

    Article  CAS  Google Scholar 

  137. Huang ZM, Ramakrishna S, Dinner HP, Tay AA (1999) Development of knitted fabric reinforced composite material for prosthetic application. J Reinf Plast Compos 18:118–137

    Article  CAS  Google Scholar 

  138. Demircan G, Kisa M, Ozen M, Aktas B (2020) Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran Polym J 29:253–264

    Article  CAS  Google Scholar 

  139. Ozen M, Demircan G, Kisa M, Acikgoz A, Ceyhan G, Işıker Y (2022) Thermal properties of surface-modified nano-Al2O3/Kevlar fiber/epoxy composites. Mater Chem Phys 278:125689

    Article  CAS  Google Scholar 

  140. Mostafa NH, Ismarrubie ZN, Sapuan SM, Sultan MT (2016) Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites. J Reinf Plast Compos 35:1093–1103

    Article  CAS  Google Scholar 

  141. Demircan G, Kisa M, Ozen M, Acikgoz A (2021) Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mech Compos Mater 57:503–516

    Article  CAS  Google Scholar 

  142. Luan C, Yao X, Fu J (2021) Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber-reinforced thermoplastic composite. Int J Adv Manuf Technol 116:3207–3215

    Article  Google Scholar 

  143. Alwan BA, Jweeg MJ, Hammoudi ZS (2019) Characteristics composite materials to be used in trans-tibial prosthetic sockets. Diyala J Eng Sci 12:115–123

    Article  Google Scholar 

  144. Widayat W, Al-Janan DH, Wakhidah DF, Prabowo D (2021) Characterization of synthetic fibers and cotton composites used in prosthetic socket. IOP Conf Ser 700:012010

    Article  Google Scholar 

  145. Abood SH, Faidh-Allah MH (2019) Analysis of prosthetic running blade of limb using different composite materials. J Eng 25:15–25

    Article  Google Scholar 

  146. Fiorillo L, D’Amico C, Turkina AY, Nicita F, Amoroso G, Risitano G (2020) Endo and exoskeleton: new technologies on composite materials. Prosthesis 2:1–9

    Article  Google Scholar 

  147. Hussien ZY, Resan KK (2017) Effects of ultraviolet radiation with and without heat, on the fatigue behavior of below-knee prosthetic sockets. Int J Mech Prod Eng Res Develop 7(641):652

    Google Scholar 

  148. Abdulrahman SA, Hamad QA, Oleiwi JK (2021) Investigation of some properties for laminated composite used for prosthetic socket. Eng Technol J 39:1625–1631

    Article  Google Scholar 

  149. Faheed NK, Oleiwi JK, Hamad QA (2021) Effect of different fiber reinforcements on some properties of prosthetic socket. Eng Technol J 39:1715–1726

    Article  Google Scholar 

  150. Oleiwi JK, Hamad QA, Abdulrahman SA (2022) Flexural, impact and max shear stress properties of fibers composite for prosthetic socket. Mater Today Proc 12:1–8

    Google Scholar 

  151. Tay FE, Manna MA, Liu LX (2002) A CASD/CASM method for prosthetic socket fabrication using the FDM technology. Rapid Prototyp J8:258–262

    Article  Google Scholar 

  152. Phillips SL, Craelius W (2005) Material properties of selected prosthetic laminates. J Prosth Orthot 17:27–32

    Article  Google Scholar 

  153. Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G, Gitter AJ (2007) Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 31:88–100

    Article  PubMed  Google Scholar 

  154. Faustini MC, Neptune RR, Crawford RH, Stanhope SJ (2008) Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans Biomed Eng 55:784–790

    Article  PubMed  Google Scholar 

  155. Montgomery JT, Vaughan MR, Crawford RH (2010) Design of an actively actuated prosthetic socket. Rapid Prototyp J16:194–201

    Article  Google Scholar 

  156. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, Ogihara N, Nakamura K, Ishigaki N, Kato H, Haniu H (2011) Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev 40:3824–3834

    Article  CAS  PubMed  Google Scholar 

  157. Rezaei F, Hassani K, Solhjoei N, Karimi A (2016) Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study. Australas Phys Eng Sci Med 38:569–580

    Article  Google Scholar 

  158. Koh YG, Park KM, Lee JA, Nam JH, Lee HY, Kang KT (2019) Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: a review. Mater Sci Eng C100:70–81

    Article  CAS  Google Scholar 

  159. Galvao JR, Zamarreno CR, Martelli C, da Silva JC, Arregui FJ, Matias IR (2017) Smart carbon fiber transtibial prosthesis based on embedded fiber Bragg gratings. IEEE Sens J18:1520–1527

    Google Scholar 

  160. Abbas SM, Resan KK, Muhammad AK, Al-Waily M (2018) Mechanical and fatigue behaviors of prosthetic for partial foot amputation with various composite materials types effect. Int J Mech Eng Technol 9:383–394

    Google Scholar 

  161. Junqueira DM, Gomes GF, Silveira ME, Ancelotti AC (2019) Design optimization and development of tubular isogrid composites tubes for lower limb prosthesis. Appl Compos Mater 26:273–297

    Article  CAS  Google Scholar 

  162. Ouarhim W, Ait-Dahi M, Bensalah MO, El Achaby M, Rodrigue D, Bouhfid R, Qaiss A (2021) Characterization and numerical simulation of laminated glass fiber-polyester composites for a prosthetic running blade. J Reinf Plast Compos 40:118–133

    Article  CAS  Google Scholar 

  163. Ismail R, Paras Utami D, Arid Irfai M, Jamari J, Bayuseno AP (2021) Mechanical properties of carbon-matrix composites for a blade runner’s artificial leg. Cogent Eng 8:1923382

    Article  Google Scholar 

  164. Abbas EN, Al-Waily M, Hammza TM, Jweeg MJ (2020) An investigation to the effects of impact strength on laminated notched composites used in prosthetic sockets manufacturing. IOP Conf Ser 928:022081

    Article  CAS  Google Scholar 

  165. Pailler D, Sautreuil P, Piera JB, Genty M, Goujon H (2004) Évolution des prothèses des sprinters amputés de membre inférieur Evolution in prostheses for sprinters with lower-limb amputation. Ann Readapt Med Phys 47:374–381

    Article  CAS  PubMed  Google Scholar 

  166. Craig J (2005) Prosthetic feet for low-income countries. J Prosthet Orthot 17:47–49

    Article  Google Scholar 

  167. Chandramohan D, Kumar AJ (2017) Fibre reinforced composites: a promising material for artificial limp. Data-Enabl Discov Appl 1:1–9

    Google Scholar 

  168. Mankai W, Brahim SB, Smida BB, Cheikh RB, Chafra M (2021) Mechanical behavior study of a lower limb prosthetic socket made of natural fiber reinforced composite. J Eng Res 9:269–277

    Article  CAS  Google Scholar 

  169. Mechi SA, Al-Waily M, Al-Khatat A (2021) The mechanical properties of the lower limb socket material using natural fibers: a review. Mater Sci Forum 1039:473–492

    Article  Google Scholar 

  170. Salman SD, Leman Z, Sultan MT, Ishak MR, Cardona F (2017) Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites. Text Res J 87:2051–2065

    Article  CAS  Google Scholar 

  171. Mahakur VK, Bhowmik S, Patowari PK (2021) Machining parametric study on the natural fiber reinforced composites: a review. Proc Inst Mech Eng C 2021:09544062211063752

    Google Scholar 

  172. Bharath KN, Basavarajappa S (2016) Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci Eng Compos Mater 23:123–133

    Article  Google Scholar 

  173. Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A (2016) Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J Reinf Plast Compos 35:447–470

    Article  CAS  Google Scholar 

  174. Venkatarajan S, Subbu C, Athijayamani A, Muthuraja R (2021) Mechanical properties of natural cellulose fibers reinforced polymer composites–2015–2020: a review. Mater Today Proc 47:1017–1024

    Article  CAS  Google Scholar 

  175. Feng NL, DharMalingam S, Zakaria KA, Selamat MZ (2019) Investigation on the fatigue life characteristic of kenaf/glass woven-ply reinforced metal sandwich materials. J Sandw Struct Mater 21:2440–2455

    Article  CAS  Google Scholar 

  176. Saba N, Jawaid M, Sultan MT (2019) An overview of mechanical and physical testing of composite materials. Mech Phys Test Biocompos Fibre Reinf Compos Hybrid Compos 2019:1–12

    Google Scholar 

  177. Ng LF, Dhar Malingam S, Selamat MZ, Mustafa Z, Bapokutty O (2020) A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres. Polym Bull 77:1449–1463

    Article  CAS  Google Scholar 

  178. Gupta MK, Srivastava RK (2016) Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer composite. Indian J Eng Mater Sci 23:231–238

    CAS  Google Scholar 

  179. Zindani D, Kumar S, Maity SR, Bhowmik S (2020) Punica granatum fibers as potential reinforcement of composite structures. Fibers Polym 21:1535–1549

    Article  CAS  Google Scholar 

  180. Kumar S, Saha A, Bhowmik S (2022) Accelerated weathering effects on mechanical, thermal and viscoelastic properties of kenaf/pineapple biocomposite laminates for load bearing structural applications. J Appl Polym Sci 139:51465

    Article  CAS  Google Scholar 

  181. Asim M, Jawaid M, Fouad H, Alothman OY (2021) Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phenolic composites. Compos Struct 267:113913

    Article  CAS  Google Scholar 

  182. Chee SS, Jawaid M, Sultan MT, Alothman OY, Abdullah LC (2019) Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym Test 79:106054

    Article  CAS  Google Scholar 

  183. Kumar S, Mer KK, Gangil B, Patel VK (2020) Synergistic effect of hybrid Himalayan Nettle/Bauhinia-vahlii fibers on physico-mechanical and sliding wear properties of epoxy composites. Def Technol 16:762–776

    Article  Google Scholar 

  184. Saba N, Jawaid M, Alrashed MM, Alothman OY (2019) Oil palm waste based hybrid nanocomposites: fire performance and structural analysis. J Build Eng 25:100829

    Article  Google Scholar 

  185. Rajeshkumar G (2020) Effect of sodium hydroxide treatment on dry sliding wear behavior of Phoenix sp. fiber reinforced polymer composites. J Ind Text 16:1528083720918948

    Google Scholar 

  186. Nayak S, Mohanty J (2020) Erosion wear behavior of benzoyl chloride modified areca sheath fiber reinforced polymer composites. Compos Commun 18:19–25

    Article  Google Scholar 

  187. Behera S, Gautam RK, Mohan S, Chattopadhyay A (2021) Dry sliding wear behavior of chemically treated sisal fiber reinforced epoxy composites. J Nat Fibers 28:1–4

    Article  Google Scholar 

  188. Lalit R, Mayank P, Ankur K (2018) Natural fibers and biopolymers characterization: a future potential composite material. Strojnícky časopis J Mech Eng 68:33–50

    Article  Google Scholar 

  189. Irawan AP, Soemardi TP, Kusumaningsih W, Reksoprodjo AH (2011) Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech 6:46–50

    Google Scholar 

  190. Stenvall E, Flodberg G, Pettersson H, Hellberg K, Hermansson L, Wallin M, Yang L (2020) Additive manufacturing of prostheses using forest-based composites. Bioengineering 7:103

    Article  CAS  PubMed Central  Google Scholar 

  191. Kramer A, Sardo K, Slocumb W, Selvaduray G (2015) Analysis of bamboo reinforced composites for use in orthotic and prosthetic application. 41st Academy Annual Meeting Scientific Symposium February, pp. 18–21

  192. Augustinus IP, Sukaina IW (2012) Tensile and impact strength of bamboo fibre reinforced epoxy composite as alternative materials for above knee prosthetic socket. Int Confer Sustain Technol Dev 2012:108–115

    Google Scholar 

  193. Shahar FS, Sultan MT, Lee SH, Jawaid M, Shah AU, Safri SN, Sivasankaran PN (2019) A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. J Mech Behav Biomed Mater 99:169–185

    Article  CAS  PubMed  Google Scholar 

  194. Odusote JK, Oyewo AT (2016) Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Eng Technol 7:125–139

    Google Scholar 

  195. Odusote JK, Oyewo AT, Adebisi JA, Akande KA (2016) Mechanical properties of banana pseudo stem fibre reinforced epoxy composite as a replacement for transtibial prosthetic socket. J Assoc Profe Eng Trinid Tob 44:4–10

    Google Scholar 

  196. Monette D, Dumond P, Chikhaoui I, Nichols P, Lemaire ED (2021) Preliminary material evaluation of flax fibers for prosthetic socket fabrication. J Biomech Eng 143:021006

    Article  PubMed  Google Scholar 

  197. Arumugam S, Kandasamy J, Md Shah AU, Hameed Sultan MT, Safri SN, Abdul Majid MS, Basri AA, Mustapha F (2020) Investigations on the mechanical properties of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composite scaffolds for bone fracture fixation applications. Polymers 12:1501

    Article  CAS  PubMed Central  Google Scholar 

  198. Irawan AP, Sukania IW (2020) Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J Appl Sci 2015:3

    Google Scholar 

  199. Sakuri S, Surojo E, Ariawan D, Prabowo AR (2020) Investigation of Agave cantala-based composite fibers as prosthetic socket materials accounting for a variety of alkali and microcrystalline cellulose treatments. Theor Appl Mech Lett 10:405–411

    Article  Google Scholar 

  200. Khare JM, Dahiya S, Gangil B, Ranakoti L, Sharma S, Huzaifah MR, Ilyas RA, Dwivedi SP, Chattopadhyaya S, Kilinc HC, Li C (2021) Comparative analysis of erosive wear behaviour of epoxy, polyester and vinyl esters based thermosetting polymer composites for human prosthetic applications using taguchi design. Polymers 13:3607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Helaili S, Mankai W, Chafra M (2021) Pressure calculation and fatigue of a trans-tibial prosthetic socket made from natural fiber composite. Int Conf Acoust Vib 2021:199–209

    Google Scholar 

  202. Mulgaonkar A, Kornbluh R, Herr H (2008) In: Carpi F, De Rossi D, Kornbluh R, Perline R, Sommer-Larsen P (eds) Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, 1st edn. Elsevier, New York

  203. Takhakh AM, Abbas SM (2018) Manufacturing and analysis of carbon fiber knee ankle foot orthosis. Int J EngTechnol 7:2236–2240

    CAS  Google Scholar 

  204. Dillingham TR, Pezzin LE, MacKenzie EJ, Burgess AR (2001) Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study. Am J Phys Med Rehabil 80:563–571

    Article  CAS  PubMed  Google Scholar 

  205. Mohd Hawari N, Jawaid M, Md Tahir P, Azmeer RA (2017) Case study: survey of patient satisfaction with prosthesis quality and design among below-knee prosthetic leg socket users. Disabil Rehabil Assist Technol 12:868–874

    Article  PubMed  Google Scholar 

  206. Jia X, Zhang M, Lee WCC (2004) Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects. J Biomech 37:1371–1377

    Article  PubMed  Google Scholar 

  207. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA (2014) Review of the socket design and interface pressure measurement for transtibial prosthesis. Sci World J 2014:1–9

    Article  Google Scholar 

  208. Lake C, Supan TJ (1997) The incidence of dermatological problems in the silicone suspension sleeve user. Am Acad Orthot Prosthet 9:97–106

    Article  Google Scholar 

  209. Han Y, Liu F, Dowd G, Zhe J (2015) A thermal management device for a lower-limb prosthesis. Appl Therm Eng 82:246–252

    Article  Google Scholar 

  210. Silver-Thorn MB (2004) Design of artificial limbs for lower extremity amputees. Stand Handbook Biomed Eng Des 33:1–30

    Google Scholar 

  211. Klute GK, Rowe GI, Mamishev AV, Ledoux WR (2007) The thermal conductivity of prosthetic sockets and liners. Prosthet Orthot Int 31:292–299

    Article  CAS  PubMed  Google Scholar 

  212. Bruinink A, Luginbuehl R (2011) Evaluation of biocompatibility using in vitro methods: interpretation and limitations. InTissue Engineering III: Cell-Surface Interactions for Tissue Culture 2011:117–152

    Google Scholar 

  213. Huzum B, Puha B, Necoara RM, Gheorghevici S, Puha G, Filip A, Sirbu PD, Alexa O (2021) Biocompatibility assessment of biomaterials used in orthopedic devices: an overview. Exp Ther Med 22:1–9

    Article  CAS  Google Scholar 

  214. Assad M, Jackson N (2019) In: Narayan R (ed) Encyclopedia of Biomedical Engineering. Elsevier, Amsterdam

  215. Cvrček L, Horáková M (2019) In:Thomas S, Mozetic M, Cvelbar U, Spatenka P, Praveen KM (eds) Non-Thermal Plasma Technology for Polymeric Materials. Applications in Composites, Nanostructured Materials and Biomedical Fields. Elsevier, Amsterdam

  216. Quinn J, McFadden R, Chan CW, Carson L (2020) Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. ISci 23:101745

    Article  CAS  Google Scholar 

  217. Rahmati M, Silva EA, Reseland JE, Heyward CA, Haugen HJ (2020) Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 49:5178–5224

    Article  CAS  PubMed  Google Scholar 

  218. Kiradzhiyska DD, Mantcheva RD (2019) Overview of biocompatible materials and their use in medicine. Folia Med 61:34–40

    Article  Google Scholar 

  219. Helmus MN, Gibbons DF, Cebon D (2008) Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol Pathol 36:70–80

    Article  CAS  PubMed  Google Scholar 

  220. Rodríguez-González FÁ (2009) Biomaterials in orthopaedic surgery. ASM Int 2009:l-10

  221. Trabelsi MF, Leluardière AD, Lacouture P (2005) Comparison between healthy and prosthetics lower limb linear momenta of one trans-tibial amputee sprinter. Comput Methods Biomech Biomed Eng 1:269–270

    Article  Google Scholar 

  222. Neo LD, Lee PV, Goh JC (2000) Principal structural testing of transtibial prosthetic assemblies: specimen preparation. Prosthet Orthot Int 24:241–245

    Article  CAS  PubMed  Google Scholar 

  223. Goh JC, Lee PV, Ng P (2002) Structural integrity of polypropylene prosthetic sockets manufactured using the polymer deposition technique. Proc Inst Mech Eng H 216:359–368

    Article  CAS  PubMed  Google Scholar 

  224. Faustini MC, Neptune RR, Crawford RH, Rogers WE, Bosker G (2006) An experimental and theoretical framework for manufacturing prosthetic sockets for transtibial amputees. IEEE Trans Neural Syst Rehabilitation Eng 14:304–310

    Article  Google Scholar 

  225. Graebner RH, Current TA (2009) Relative strength of pylon-to-socket attachment systems used in transtibial composite sockets. J Prosthet Orthot 19:67–74

    Article  Google Scholar 

  226. Gerschutz MJ, Haynes ML, Nixon D, Colvin JM (2012) Strength evaluation of prosthetic check sockets, copolymer sockets, and definitive laminated sockets. J Rehabil Res Dev 49:405–412

    Article  PubMed  Google Scholar 

  227. Mathur N, Glesk I, Buis A (2015) Skin temperature prediction in lower limb prostheses. IEEE J Biomed Health Inform 20:158–165

    Article  Google Scholar 

  228. Vitali A, Regazzoni D, Rizzi C, Colombo G (2017) Design and additive manufacturing of lower limb prosthetic socket. ASME International Mechanical Engineering Congress and Exposition 58462: V011T15A021

  229. Lindberg A, Alfthan J, Pettersson H, Flodberg G, Yang L (2018) Mechanical performance of polymer powder bed fused objects-FEM simulation and verification. Addit Manuf 24:577–586

    CAS  Google Scholar 

  230. Pousett B, Lizcano A, Raschke SU (2019) An investigation of the structural strength of transtibial sockets fabricated using conventional methods and rapid prototyping techniques. Canadian Prosthet Orthot J 2:1–10

    Google Scholar 

  231. Owen MK, DesJardins JD (2020) Transtibial prosthetic socket strength: the use of ISO 10328 in the comparison of standard and 3D-printed sockets. J Prosthet Orthot 32:93–100

    Article  Google Scholar 

  232. Gaba EW, Asimeng BO, Kaufmann EE, Foster EJ, Tiburu EK (2021) The influence of pineapple leaf fiber orientation and volume fraction on methyl methacrylate-based polymer matrix for prosthetic socket application. Polymers 13:3381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Gariboldi F, Pasquarelli D, Cutti AG (2022) Structural testing of lower-limb prosthetic sockets: a systematic review. Med Eng Phys 12:103742

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and express gratitude toward Machine Element Lab, National Institute of Technology Silchar, Assam for providing their valuable technical support.

Funding

The author(s) do not receive any financial support for the research, authorship, and/or publication of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this review article.

Research involving human and animal participants

The current review article does not contain any study with human or animal participants performed by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Bhowmik, S. Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: a review on fair inclusion in amputees. Iran Polym J 31, 1297–1319 (2022). https://doi.org/10.1007/s13726-022-01077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01077-1

Keywords

Navigation