Skip to main content
Log in

Design Optimization and Development of Tubular Isogrid Composites Tubes for Lower Limb Prosthesis

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

From the beginnings of humanity, natural or unnatural misfortunes such as illnesses, wars, automobile accidents cause loss of body limbs like teeth, arms, legs, etc. The solution found for the replacement of these missing limbs is in the use of prostheses. Lower limbs tubes or pylons are prosthetics components that are claimed to support loads during walking and other daily tasks activities. Commonly, prosthetic tubes are manufactured using metal materials such as stainless steel, aluminum and titanium. The mass of these tubes is generally high compared to tubes made of carbon fiber reinforced polymer matrix (CFRP) composite. Therefore, this work has the objective of design, manufacturing and analyzing the feasibility of a new tube concept, made of composite material, which makes use of lattice structure and inner layer. Until the present moment, lower limb prosthesis tubes using lattice structure and ineer layer have never been studied and/or tested to date. It can be stated that the tube of rigid ribs with inner layer and angle of 40° is more efficient than those of 26° and 30°. The proposed design allows a structural weight reduction in high performance prostheses from 120 g to 40 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Φ :

Angle of helical ribs with respect to the axial axis of the structure

δ h :

Width of helical ribs

δ c :

Width of circular ribs

α h :

Distance between helical ribs

α c :

Distance between circular ribs

ρ h :

Specific mass of the augers

\( \overline{h} \) :

Average thickness of rigid ribs

\( \overline{\delta_h} \) :

Average width of helical ribs

\( \overline{\delta_c} \) :

Average width of circular ribs

\( \overline{\rho} \) :

Average specific mass of rigid ribs

σ h :

Helical ribs rupture stress

σ c :

Circular ribs rupture stress

D :

Diameter of the isogrid tube

E c :

Circular ribs modulus of elasticity

E h :

Modulus of elasticity of the helical ribs

h :

Thickness of the isogrid

k :

Buckling factor

L :

Length of the isogrid tube

M :

Structure mass

P :

Loading factor

References

  1. Gard, S.A., Konz, R.J.: The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J. Rehabil. Res. Dev. 40(2), 109–124 (2003)

    Article  Google Scholar 

  2. Shasmin, N., et al.: A new pylon materials in transtibial prosthesis: a preliminary study. J. Biomech. 40, S297 (2007)

    Article  Google Scholar 

  3. Bliquez, L.V.: Classical prosthetics. Archaeol. Inst. Am. 36(5), 25–29 (1983)

    CAS  Google Scholar 

  4. Norton, K.: A brief history of prosthetics. InMotion. 17(7), 1–3 (2007)

    Google Scholar 

  5. Benhamou, R.: The artificial limb in preindustrial France. Technol. Cult. 35(4), 835–845 (1994)

    Article  Google Scholar 

  6. Nolan, L.: Carbon fibre prostheses and running in amputees: a review. Foot Ankle Surg. 14(3), 125–129 (2008)

    Article  Google Scholar 

  7. Phillips, V. L. Composite Prosthetic Foot and Leg USA (1983)

  8. Vilagra, J., Sganzerla, C., Walcker, L.: Próteses transtibiais: itens de conforto e segurança. Rev. Thema Sci. 1(2), 107–112 (2011)

    Google Scholar 

  9. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., Gilbert, M.E., Muflahi, S.A., Pernice, M.F., Rae, S.I., Trevarthen, J.A., White, S.C., Weaver, P.M., Bond, I.P.: The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos. Sci. Technol. 71(16), 1791–1803 (2011)

    Article  CAS  Google Scholar 

  10. Shasmin, H.N., Abu Osman, N.A., Abd Latif, L.: Economical tube adapter material in below knee prosthesis. IFMBE Proc. 21(1), 407–409 (2008)

    Article  Google Scholar 

  11. Giest, T.N., Chang, Y.H.: Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation. J. Biomech. 49(9), 1757–1764 (2016)

    Article  Google Scholar 

  12. Silverman, A.K., Neptune, R.R.: Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J. Biomech. 45(13), 2271–2278 (2012)

    Article  Google Scholar 

  13. Winter, D.A., Sienko, S.E.: Biomechanics of below-knee amputee gait. J. Biomech. 21(5), 361–367 (1988)

    Article  CAS  Google Scholar 

  14. Major, M.J., Twiste, M., Kenney, L.P., Howard, D.: Amputee independent prosthesis properties—a new model for description and measurement. J. Biomech. 44(14), 2572–2575 (2011)

    Article  Google Scholar 

  15. Carroll, K., Sabolich, S.: Below-Knee Prosthetics. Is It Time For An Upgrade? INMotion Mag. 9(4), 1 (1999)

    Google Scholar 

  16. Junqueira, D.M., Silveira, M.E., Ancelotti Junior, A.C.: Analysis of spot-weld distribution in a weldment — numerical simulation and topology optimization. Int. J. Adv. Manuf. Technol. 1, 1–9 (2018)

    Google Scholar 

  17. Lee, W.C.C., Zhang, M.: Fatigue test of low-cost flexible-shank monolimb transtibial prosthesis. Prosthetics Orthot. Int. 30(3), 305–315 (2006)

    Article  Google Scholar 

  18. Rothschild, V., et al.: Clinical experience with total thermoplastic lower limb prostheses. J. Prosthet. Orthot. 3(1), 51–54 (1990)

    Article  Google Scholar 

  19. Valenti, T.: Experience with Endoflex: A Monolithic Thermoplastic for Below-Knee Amputees. J. Prosthet. Orthot. 3(1), 43–50 (1990)

    Article  Google Scholar 

  20. Ancelotti, A. C. Efeitos da porosidade na resistência ao cisalhamento e nas propriedades dinâmicas de compósitos de fibra de carbono/resina epóxi – Doctoral Thesis-Technological Institute of Aeronautics (2006)

  21. Lebrão, G. W.: Viabilidade De Fabricação De Tubo Para Prótese De Membro Inferior Em Compósito Híbrido Epóxi Carbono-Vidro. [s.l.], Doctoral Thesis - Universidade de São Paulo (2007). https://doi.org/10.11606/D.85.2007.tde-25062007-163320

  22. Martins, A. T. D.: Projeto e Fabricação de Tubos Compósitos em Fibras de Carbono/Epóxi para Próteses Transtibiais por Moldagem com Bladder. Master in Engineering Thesis - Universidade Federal de Itajubá (2015)

  23. Wilson, M. T.: Composite pylon for a prosthetic device. U.S. Patent Application n. 14/483,281, 12 mar. 2015

  24. Fey, N.P., Klute, G.K., Neptune, R.R.: The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin. Biomech. 26(10), 1025–1032 (2011)

    Article  Google Scholar 

  25. Sam, M., Childress, D., Hansen, A., Meier, M., Lambla, S., Grahn, E., Rolock, J.: The “Shape & Roll” prosthetic foot: I. Design and development of appropriate Technology for low-Income Countries. Med. Conflict Surviv. 20(4), 294–306 (2004)

    Article  Google Scholar 

  26. Kobayashi, T., Orendurff, M.S., Zhang, M., Boone, D.A.: Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses. J. Biomech. 46(7), 1343–1350 (2013)

    Article  Google Scholar 

  27. Kobayashi, T., Orendurff, M.S., Arabian, A.K., Rosenbaum-Chou, T.G., Boone, D.A.: Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees. J. Biomech. 47(6), 1315–1323 (2014)

    Article  Google Scholar 

  28. Schwarze, M., Hurschler, C., Seehaus, F., Oehler, S., Welke, B.: Loads on the prosthesis-socket interface of above-knee amputees during normal gait: validation of a multi-body simulation. J. Biomech. 46(6), 1201–1206 (2013)

    Article  Google Scholar 

  29. Coleman, K.L., Boone, D.A., Smith, D.G., Czerniecki, J.M.: Effect of transtibial prosthesis pylon flexibility on ground reaction forces during gait. Prosthetics Orthot. Int. 25(3), 195–201 (2001)

    Article  CAS  Google Scholar 

  30. Gomes, G.F., Diniz, C.A., da Cunha, S.S., Ancelotti, A.C.: Design optimization of composite prosthetic tubes using GA-ANN algorithm considering Tsai-Wu failure criteria. J. Fail. Anal. Prev. 17(4), 740–749 (2017)

    Article  Google Scholar 

  31. Berge, J.S., Klute, G.K., Czerniecki, J.M.: Mechanical properties of shock-absorbing pylons used in transtibial prostheses. J. Biomech. Eng. 126(1), 120–122 (2004)

    Article  Google Scholar 

  32. Zheng, Q., Jiang, D., Huang, C., Shang, X., Ju, S.: Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Compos. Struct. 131, 885–894 (2015)

    Article  Google Scholar 

  33. Totaro, G.: Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells. Compos. Struct. 94, 446–452 (2012)

    Article  Google Scholar 

  34. Fan, H., Fang, D., Chen, L., Dai, Z., Yang, W.: Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores. Compos. Sci. Technol. 69(15–16), 2695–2700 (2009)

    Article  CAS  Google Scholar 

  35. Totaro, G., De Nicola, F., Caramuta, P.: Local buckling modelling of anisogrid lattice structures with hexagonal cells: an experimental verification. Compos. Struct. 106, 734–741 (2013)

    Article  Google Scholar 

  36. Huybrechts, S. M.; Hahn, S. E.; Meink, T. E. Grid stiffened structures: a Survay of fabrication, analysis and design methods. 12 ICCM Proceedings, (1999)

  37. Huybrechts, S.M., Meink, T.E., Wegner, P.M., Ganley, J.M.: Manufacturing theory for advanced grid stiffened structures. Compos Part A. 33(2), 155–161 (2002)

    Article  Google Scholar 

  38. Meyer, R. R.: McDonnell Douglas Astronautics Company, Isogrid Design Handbook. NASA Contractor Report, CIR-124075, Revision A (1973)

  39. Vasiliev, V. V.; Razin, A. F. Optimal design of filament-wound anisogrid composite lattice structures. Proceedings of the 16th annual technical conference of American society for composites. Blacksburg USA, (2001)

  40. Vasiliev, V.V., Razin, A.F.: Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 76(1–2), 182–189 (2006)

    Article  Google Scholar 

  41. Madhavi, M., Rao, K.V.J., Rao, K.N.: Design and analysis of filament wound composite pressure vessel with integrated-end domes. Def. Sci. J. 59(1), 73–81 (2009)

    Article  Google Scholar 

  42. Sorrentino, L., Marchetti, M., Bellini, C., Delfini, A., Albano, M.: Design and manufacturing of an isogrid structure in composite material: numerical and experimental results. Compos. Struct. 143, 189–201 (2016)

    Article  Google Scholar 

  43. Silveira, M.E., Fancello, E.A.: O uso de otimização numérica no projeto de blanks soldados. Cienc. Eng/Sci. Eng. J. 24(1), 9–19 (2015)

    Google Scholar 

  44. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  45. Handbook, Military. "MIL-HDBK-17-2F: composite materials handbook." Polym. Matrix. Compos. Mater. Usage. Des. Anal. 17 (2002)

  46. NBR ISO 10328-1: Próteses - Ensaio Estrutural para Próteses de Membro Inferior: configurações de ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2002)

  47. D’Angeli, V., Belvedere, C., Ortolani, M., Giannini, S., Leardini, A.: Load along the femur shaft during activities of daily living. J. Biomech. 46(12), 2002–2010 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Funding Authority for Studies and Projects (FINEP) for the project number 01.13.0169.00 and Altair Hyperworks®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Ferreira Gomes.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junqueira, D.M., Gomes, G.F., Silveira, M.E. et al. Design Optimization and Development of Tubular Isogrid Composites Tubes for Lower Limb Prosthesis. Appl Compos Mater 26, 273–297 (2019). https://doi.org/10.1007/s10443-018-9692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9692-2

Keywords

Navigation