Skip to main content
Log in

Eucommia Ulmoides Barks-derived Anodes for Sodium ion Battery and Method to Improve Electrochemical Performances by Modifying Defects

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Hard carbon were prepared from Eucommia ulmoides barks by carbonization (1100 or 1300 °C) and then used as anode materials for sodium ion battery (SIB). Results showed that, although increased carbonization temperature had positive influence on the initial coulombic efficiency (ICE) of samples, the sample carbonized at higher temperature could not show higher specific capacities from 100 mA g− 1 to 1 A g− 1 (current density). This phenomenon could be attributed to few changes of specific surface area for samples carbonized at different temperature. Further studies showed that if the obtained hard carbon underwent high temperature treatment together with pitch powders (the hard carbon did not need to contact with pitch powders directly during the treating process), the specific surface area of samples decreased, while number of disordered bonds and interlayer distance of crystallites increased. The modification of structural defects made the samples show better electrochemical performances (ICE, specific capacity and cycling characteristic). Additionally, when the method (modifying defects) was used in Cupressus funebris (cypress wood) based anodes for SIB, the ICE and specific capacities at different current densities of samples could also be improved, which means the method may have good applicability for producing biomass-derived SIB anodes on a large scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kong, J., Pan, G., Su, Z.: The coal as high performance and low cost anodes for sodium-ion batteries. Mater. Lett. X. 13, 100123 (2022). https://doi.org/10.1016/j.mlblux.2022.100123

    Article  CAS  Google Scholar 

  2. Wang, J., Yan, L., Liu, B., Ren, Q., Fan, L., Shi, Z., Zhang, Q.: A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage. Chin. Chem. Lett. 34, 107526 (2023). https://doi.org/10.1016/j.cclet.2022.05.040

    Article  CAS  Google Scholar 

  3. Zhang, Y.P., Wang, J.X., Zhao, P.Y., Li, M.W., Wang, C.Y.: Anode performance of NaOH-etched mesocarbon microbeads for sodium-ion batteries. Mater. Sci. Eng. B. 264, 114934 (2021). https://doi.org/10.1016/j.mseb.2020.114934

    Article  CAS  Google Scholar 

  4. Alcántara, R., Jiménez-Mateos, J.M., Lavela, P., Tirado, J.L.: Carbon black: A promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001). https://doi.org/10.1016/S1388-2481(01)00244-2

    Article  Google Scholar 

  5. Kamiyama, A., Kubota, K., Nakano, T., Fujimura, S., Shiraishi, S., Tsukada, H., Komaba, S.: High-capacity hard Carbon synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Appl. Energy Mater. 3, 135–140 (2020). https://doi.org/10.1021/acsaem.9b01972

    Article  CAS  Google Scholar 

  6. Fan, C., Zhang, R., Luo, X., Hu, Z., Zhou, W., Zhang, W., Liu, J., Liu, J.: Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon. 205, 353–364 (2023). https://doi.org/10.1016/j.carbon.2023.01.048

    Article  CAS  Google Scholar 

  7. Sun, S., Wang, L., Xu, H.: Characteristics and current activation phenomenon of reduced graphite oxide membranes by low temperature thermal treatment for sodium ion battery electrodes. Funct. Mater. Lett. 16, 2350002 (2023). https://doi.org/10.1142/S1793604723500029

    Article  ADS  CAS  Google Scholar 

  8. Wang, Y.X., Chou, S.L., Liu, H.K., Dou, S.X.: Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon. 57, 202–208 (2013). https://doi.org/10.1016/j.carbon.2013.01.064

    Article  CAS  Google Scholar 

  9. Dahbi, M., Kiso, M., Kubota, K., Horiba, T., Chafik, T., Hida, K., Matsuyama, T., Komaba, S.: Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A. 5, 9917–9928 (2017). https://doi.org/10.1039/C7TA01394A

    Article  CAS  Google Scholar 

  10. Pei, L., Cao, H., Yang, L., Liu, P., Zhao, M., Xu, B., Guo, J.: Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics. 26, 5535–5542 (2020). https://doi.org/10.1007/s11581-020-03723-1

    Article  CAS  Google Scholar 

  11. Wang, Q., Zhu, X., Liu, Y., Fang, Y., Zhou, X., Bao, J.: Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 127, 658–666 (2018). https://doi.org/10.1016/j.carbon.2017.11.054

    Article  CAS  Google Scholar 

  12. Li, Y., Hu, Y.S., Titirici, M.M., Chen, L., Huang, X.: Hard Carbon Microtubes made from renewable cotton as high-performance Anode Material for Sodium-Ion batteries. Adv. Energy Mater. 6, 1600659 (2016). https://doi.org/10.1002/aenm.201600659

    Article  CAS  Google Scholar 

  13. Senthil, C., Park, J.W., Shaji, N., Sim, G.S., Lee, C.W.: Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity. J. Energy Chem. 64, 286–295 (2022). https://doi.org/10.1016/j.jechem.2021.04.060

    Article  CAS  Google Scholar 

  14. Wei, C., Dang, W., Li, M., Ma, X., Li, M., Zhang, Y.: Hard-soft carbon nanocomposite prepared by pyrolyzing biomass and coal waste as sodium-ion batteries anode material. Mater. Lett. 330, 133368 (2023). https://doi.org/10.1016/j.matlet.2022.133368

    Article  CAS  Google Scholar 

  15. Xu, Z., Chen, J., Wu, M., Chen, C., Song, Y., Wang, Y.: Effects of different atmosphere on electrochemical performance of hard carbon electrode in sodium ion battery. Electron. Mater. Lett. 15, 428–436 (2019). https://doi.org/10.1007/s13391-019-00143-w

    Article  ADS  CAS  Google Scholar 

  16. Huang, S., Qiu, X.Q., Wang, C.W., Zhong, L., Zhang, Z.H., Yang, S.S., Sun, S.R., Yang, D.J., Zhang, W.L.: Biomass-derived carbon anodes for sodium-ion batteries. New. Carbon Mater. 38, 40–66 (2023). https://doi.org/10.1016/S1872-5805(23)60718-8

    Article  CAS  Google Scholar 

  17. Alvira, D., Antorán, D., Manyà, J.J.: Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447, 137468 (2022). https://doi.org/10.1016/j.cej.2022.137468

    Article  CAS  Google Scholar 

  18. Dou, X., Hasa, I., Saurel, D., Vaalma, C., Wu, L., Buchholz, D., Bresser, D., Komaba, S., Passerini, S.: Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today. 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040

    Article  CAS  Google Scholar 

  19. Pendashteh, A., Orayech, B., Suhard, H., Jauregui, M., Ajuria, J., Silván, B., Clarke, S., Bonilla, F., Saurel, D.: Boosting the performance of soft carbon negative electrode for high power Na-ion batteries and Li-ion capacitors through a rational strategy of structural and morphological manipulation. Energy Storage Mater. 46, 417–430 (2022). https://doi.org/10.1016/j.ensm.2022.01.030

    Article  Google Scholar 

  20. Liu, J., Wang, L., Huang, Z., Fan, F., Jiao, L., Li, F.: Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Chem. Pap. 76, 7465–7473 (2022). https://doi.org/10.1007/s11696-022-02397-5

    Article  CAS  Google Scholar 

  21. Jing, W., Wang, M., Li, Y., Li, H.R., Zhang, H., Hu, S., Wang, H., He, Y.B.: Pore structure engineering of wood-derived hard carbon enables their high-capacity and cycle-stable sodium storage properties. Electrochim. Acta. 391, 139000 (2021). https://doi.org/10.1016/j.electacta.2021.139000

    Article  CAS  Google Scholar 

  22. Wan, Y., Liu, Y., Chao, D., Li, W., Zhao, D.: Recent advances in hard carbon anodes with high initial coulombic efficiency for sodium-ion batteries. Nano Mater. Sci. 5, 189–201 (2023). https://doi.org/10.1016/j.nanoms.2022.02.001

    Article  CAS  Google Scholar 

  23. Yang, B., Wang, J., Zhu, Y., Ji, K., Wang, C., Ruan, D., Xia, Y.: Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries. J. Power Sources. 492, 229656 (2021). https://doi.org/10.1016/j.jpowsour.2021.229656

    Article  CAS  Google Scholar 

  24. Liu, P., Li, Y., Hu, Y.-S., Li, H., Chen, L., Huang, X.: A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A. 4, 13046–13052 (2016). https://doi.org/10.1039/C6TA04877C

    Article  CAS  Google Scholar 

  25. Zhu, Y., Chen, M., Li, Q., Yuan, C., Wang, C.: A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon. 129, 695–701 (2018). https://doi.org/10.1016/j.carbon.2017.12.103

    Article  CAS  Google Scholar 

  26. Wang, J., Zhao, J., He, X., Qiao, Y., Li, L., Chou, S.L.: Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustainable Mater. Technol. 33, e00446 (2022). https://doi.org/10.1016/j.susmat.2022.e00446

    Article  CAS  Google Scholar 

  27. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  ADS  CAS  Google Scholar 

  28. Jagiello, J., Olivier, J.P.: Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption. 19, 777–783 (2013). https://doi.org/10.1007/s10450-013-9517-4

    Article  CAS  Google Scholar 

  29. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon. 55, 70–80 (2013). https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  30. Jagiello, J., Kenvin, J., Celzard, A., Fierro, V.: Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon. 144, 206–215 (2019). https://doi.org/10.1016/j.carbon.2018.12.028

    Article  CAS  Google Scholar 

  31. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon. 91, 330–337 (2015). https://doi.org/10.1016/j.carbon.2015.05.004

    Article  CAS  Google Scholar 

  32. Xu, Z., Huang, Y., Ding, L., Huang, J., Gao, H., Li, T.: Highly stable Basswood Porous Carbon Anode activated by Phosphoric Acid for a Sodium Ion Battery. Energy Fuels. 34, 11565–11573 (2020). https://doi.org/10.1021/acs.energyfuels.0c02286

    Article  CAS  Google Scholar 

  33. Tuinstra, F., Koenig, J.L.: Raman Spectrum of Graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  ADS  CAS  Google Scholar 

  34. Xie, L.J., Tang, C., Song, M.X., Guo, X.Q., Li, X.M., Li, J.X., Yan, C., Kong, Q.Q., Sun, G.H., Zhang, Q., Su, F.Y., Chen, C.M.: Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review. J. Energy Chem. 72, 554–569 (2022). https://doi.org/10.1016/j.jechem.2022.05.006

    Article  CAS  Google Scholar 

  35. Chen, S., Tang, K., Song, F., Liu, Z., Zhang, N., Lan, S., Xie, X., Wu, Z.: Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries. Nanotechnology. 33, 055401 (2022). https://doi.org/10.1088/1361-6528/ac317d

    Article  ADS  CAS  Google Scholar 

  36. Wang, B.Y., Xia, J.L., Dong, X.L., Wu, X.S., Jin, L.J., Li, W.C.: Highly purified Carbon Derived from Deashed Anthracite for Sodium-Ion Storage with enhanced capacity and rate performance. Energy Fuels. 34, 16831–16837 (2020). https://doi.org/10.1021/acs.energyfuels.0c03138

    Article  CAS  Google Scholar 

  37. Zhao, C., Wang, Q., Lu, Y., Li, B., Chen, L., Hu, Y.S.: High-temperature treatment induced carbon anode with ultrahigh na storage capacity at low-voltage plateau. Sci. Bull. 63, 1125–1129 (2018). https://doi.org/10.1016/j.scib.2018.07.018

    Article  CAS  Google Scholar 

  38. Zhang, S.W., Lv, W., Luo, C., You, C.H., Zhang, J., Pan, Z.Z., Kang, F.Y., Yang, Q.H.: Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23 (2016). https://doi.org/10.1016/j.ensm.2015.12.004

    Article  Google Scholar 

  39. Zhao, P.Y., Yu, B.J., Sun, S., Guo, Y., Chang, Z.Z., Li, Q., Wang, C.Y.: High-performance anode of Sodium Ion Battery from Polyacrylonitrile/Humic Acid Composite Electrospun Carbon fibers. Electrochim. Acta. 232, 348–356 (2017). https://doi.org/10.1016/j.electacta.2017.02.159

    Article  CAS  Google Scholar 

  40. Gaddam, R.R., Yang, D., Narayan, R., Raju, K., Kumar, N.A., Zhao, X.S.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy. 26, 346–352 (2016). https://doi.org/10.1016/j.nanoen.2016.05.047

    Article  CAS  Google Scholar 

  41. Wu, L., Buchholz, D., Vaalma, C., Giffin, G.A., Passerini, S.: Apple-Biowaste-Derived Hard Carbon as a powerful Anode material for Na-Ion batteries. ChemElectroChem. 3, 292–298 (2016). https://doi.org/10.1002/celc.201500437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Science Research Project of Hebei Education Department (No. ZC2024162), and Youth Foundation of Science and Technology Research Program from Hebei Education Department (No. QN2018165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Sun.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, L. Eucommia Ulmoides Barks-derived Anodes for Sodium ion Battery and Method to Improve Electrochemical Performances by Modifying Defects. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00486-z

Keywords

Navigation