Skip to main content
Log in

Insights into the electrochemical properties of bagasse-derived hard carbon anode materials for sodium-ion battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bio-derived Hard Carbon is a proven negative electrode material for sodium ion battery (SIB). In the present study, we report synthesis of carbonaceous anode material for SIBs by pyrolyzing sugarcane bagasse, an abundant biowaste. Sugarcane bagasse contains carbon-rich compounds e.g., hemicellulose, lignin and cellulose which prevent graphitization of carbon on pyrolysis. The prepared material is highly disordered, porous with flake-like structures and has enhanced interplanar spacing which facilitate the faster Na ion transport and enhanced sodium storage as evidenced by the excellent electrochemical characteristics of the hard carbon pyrolyzed at 900 °C (SW 900) showing highest 2nd cycle discharge capacity of 300 mAhg−1 at 25 mAg−1. Even after subjecting the SW 900 for 300 cycling at 100 mAg−1, the capacity of over 65% is found. This confirms sugarcane waste as a suitable hard carbon anode material for SIB application. The sodium storage mechanism of the hard carbon contributing to the slope and the plateau capacity has been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study can be made available from the corresponding author upon reasonable request.

References

  1. Ajmal S, Kumar A, Selvaraj M et al (2023) MXenes and their interfaces for the taming of carbon dioxide & nitrate: a critical review. Coord Chem Rev 483:215094. https://doi.org/10.1016/j.ccr.2023.215094

    Article  CAS  Google Scholar 

  2. Yasin G, Ibrahim S, Ajmal S et al (2022) Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev 469:214669. https://doi.org/10.1016/j.ccr.2022.214669

    Article  CAS  Google Scholar 

  3. Yasin G, Ibrahim S, Ibraheem S et al (2021) Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. J Mater Chem A Mater 9:18222–18230. https://doi.org/10.1039/D1TA05812F

    Article  CAS  Google Scholar 

  4. Yasin G, Ali S, Ibraheem S et al (2023) Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal 13:2313–2325. https://doi.org/10.1021/acscatal.2c05654

    Article  CAS  Google Scholar 

  5. Yu D, Kumar A, Nguyen TA et al (2020) High-voltage and ultrastable aqueous zinc–iodine battery enabled by n-doped carbon materials: revealing the contributions of nitrogen configurations. ACS Sustain Chem Eng 8:13769–13776. https://doi.org/10.1021/acssuschemeng.0c04571

    Article  CAS  Google Scholar 

  6. Yasin G, Arif M, Mehtab T et al (2020) Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Stor Mater 25:644–678. https://doi.org/10.1016/j.ensm.2019.09.020

    Article  Google Scholar 

  7. Deng J, Luo W-B, Chou S-L et al (2018) Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater 8:1701428. https://doi.org/10.1002/aenm.201701428

    Article  CAS  Google Scholar 

  8. Yabuuchi N, Kajiyama M, Iwatate J et al (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517. https://doi.org/10.1038/nmat3309

    Article  CAS  PubMed  Google Scholar 

  9. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Zhang J, Kintner-Meyer MCW et al (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  PubMed  Google Scholar 

  11. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  12. Yasin G, Arif M, Ma J et al (2022) Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries. Inorg chem front 9:1058–1069. https://doi.org/10.1039/D1QI01105G

    Article  CAS  Google Scholar 

  13. Yasin G, Arif M, Mehtab T et al (2020) A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorg chem front 7:402–410. https://doi.org/10.1039/C9QI01105F

    Article  CAS  Google Scholar 

  14. Zhao Y, Wang F, Wang C et al (2019) Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy 56:426–433. https://doi.org/10.1016/j.nanoen.2018.11.040

    Article  CAS  Google Scholar 

  15. Wang L, Wei Z, Mao M et al (2019) Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Stor Mater 16:434–454. https://doi.org/10.1016/j.ensm.2018.06.027

    Article  Google Scholar 

  16. Jiang G, Qiu Y, Lu Q et al (2019) Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage. ACS Appl Mater Interfaces 11:41188–41195. https://doi.org/10.1021/acsami.9b07060

    Article  CAS  PubMed  Google Scholar 

  17. Cheng H, Garcia-Araez N, Hector AL (2020) Synthesis of vanadium nitride–hard carbon composites from cellulose and their performance for sodium-ion batteries. ACS Appl Energy Mater 3:4286–4294. https://doi.org/10.1021/acsaem.0c00003

    Article  CAS  Google Scholar 

  18. Qi S, Li F, Wang J et al (2019) Prediction of a flexible anode material for Li/Na ion batteries: phosphorous carbide monolayer (α-PC). Carbon N Y 141:444–450. https://doi.org/10.1016/j.carbon.2018.09.031

    Article  CAS  Google Scholar 

  19. Zhou J, Liu X, Zhu L et al (2020) High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem 6:221–233. https://doi.org/10.1016/j.chempr.2019.10.021

    Article  CAS  Google Scholar 

  20. Edison E, Sreejith S, Madhavi S (2017) Melt-spun Fe–Sb intermetallic alloy anode for performance enhanced sodium-ion batteries. ACS Appl Mater Interfaces 9:39399–39406. https://doi.org/10.1021/acsami.7b13096

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Fu K, Lu Y et al (2015) Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv 5:30793–30800. https://doi.org/10.1039/C5RA01729G

    Article  CAS  Google Scholar 

  22. Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8:389–393. https://doi.org/10.1021/cm950304y

    Article  CAS  Google Scholar 

  23. Dou X, Hasa I, Saurel D et al (2019) Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today 23:87–104. https://doi.org/10.1016/j.mattod.2018.12.040

    Article  CAS  Google Scholar 

  24. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803. https://doi.org/10.1149/1.1379565

    Article  CAS  Google Scholar 

  25. Kim H, Hong J, Park Y-U et al (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541. https://doi.org/10.1002/adfm.201402984

    Article  CAS  Google Scholar 

  26. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271. https://doi.org/10.1149/1.1393348

    Article  CAS  Google Scholar 

  27. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593. https://doi.org/10.1126/science.270.5236.590

    Article  CAS  Google Scholar 

  28. Izanzar I, Dahbi M, Kiso M et al (2018) Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon N Y 137:165–173. https://doi.org/10.1016/j.carbon.2018.05.032

    Article  CAS  Google Scholar 

  29. Lotfabad EM, Ding J, Cui K et al (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129. https://doi.org/10.1021/nn502045y

    Article  CAS  PubMed  Google Scholar 

  30. Qin D, Zhang F, Dong S et al (2016) Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes. RSC Adv 6:106218–106224. https://doi.org/10.1039/C6RA22769D

    Article  CAS  Google Scholar 

  31. Zhu X, Jiang X, Liu X et al (2017) A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy Environ 2:310–315. https://doi.org/10.1016/j.gee.2017.05.004

    Article  Google Scholar 

  32. Zhang T, Mao J, Liu X et al (2017) Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv 7:41504–41511. https://doi.org/10.1039/C7RA07231G

    Article  CAS  Google Scholar 

  33. Dahbi M, Kiso M, Kubota K et al (2017) Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A Mater 5:9917–9928. https://doi.org/10.1039/C7TA01394A

    Article  CAS  Google Scholar 

  34. Wang Q, Zhu X, Liu Y et al (2018) Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon N Y 127:658–666. https://doi.org/10.1016/j.carbon.2017.11.054

    Article  CAS  Google Scholar 

  35. Lv W, Wen F, Xiang J et al (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541. https://doi.org/10.1016/j.electacta.2015.07.059

    Article  CAS  Google Scholar 

  36. Xiang J, Lv W, Mu C et al (2017) Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd 701:870–874. https://doi.org/10.1016/j.jallcom.2017.01.206

    Article  CAS  Google Scholar 

  37. Wu L, Buchholz D, Vaalma C et al (2016) Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. Chemelectrochem 3:292–298. https://doi.org/10.1002/celc.201500437

    Article  CAS  Google Scholar 

  38. Zhang N, Liu Q, Chen W et al (2018) High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J Power Sources 378:331–337. https://doi.org/10.1016/j.jpowsour.2017.12.054

    Article  CAS  Google Scholar 

  39. Shen F, Luo W, Dai J et al (2016) Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater 6:1600377. https://doi.org/10.1002/aenm.201600377

    Article  CAS  Google Scholar 

  40. Wang B, Wang Y, Peng Y et al (2018) 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. J Power Sources 390:186–196. https://doi.org/10.1016/j.jpowsour.2018.04.056

    Article  CAS  Google Scholar 

  41. Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. International journal of environmental research and public health 16(5):832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wyman CE (1999) BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges. Annu Rev Energy Environ 24:189–226. https://doi.org/10.1146/annurev.energy.24.1.189

    Article  Google Scholar 

  43. Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41:1454–1461. https://doi.org/10.1021/ie001025+

    Article  CAS  Google Scholar 

  44. Sun J (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

    Article  CAS  Google Scholar 

  45. Bommier C, Luo W, Gao W-Y et al (2014) Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon N Y 76:165–174. https://doi.org/10.1016/j.carbon.2014.04.064

    Article  CAS  Google Scholar 

  46. Zhu Y, Chen M, Li Q et al (2017) High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon N Y 123:727–734. https://doi.org/10.1016/j.carbon.2017.08.030

    Article  CAS  Google Scholar 

  47. Matsubara EY, Lala SM, Rosolen JM (2010) Lithium storage into carbonaceous materials obtained from sugarcane bagasse. J Braz Chem Soc 21:1877–1884. https://doi.org/10.1590/S0103-50532010001000012

    Article  CAS  Google Scholar 

  48. Raj KA, Panda MR, Dutta DP, Mitra S (2019) Bio-derived mesoporous disordered carbon: an excellent anode in sodium-ion battery and full-cell lab prototype. Carbon N Y 143:402–412. https://doi.org/10.1016/j.carbon.2018.11.038

    Article  CAS  Google Scholar 

  49. Górka J, Vix-Guterl C, Matei Ghimbeu C (2016) Recent progress in design of biomass-derived hard carbons for sodium ion batteries. C (Basel) 2:24. https://doi.org/10.3390/c2040024

    Article  CAS  Google Scholar 

  50. Wang K, Jin Y, Sun S et al (2017) Low-cost and high-performance hard carbon anode materials for sodium-ion batteries. ACS Omega 2:1687–1695. https://doi.org/10.1021/acsomega.7b00259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors Bharat Verma and Harsha Rajput acknowledge the Ministry of Human Resource Development (MHRD) for the financial support in terms of their Ph.D. fellowships.

Author information

Authors and Affiliations

Authors

Contributions

Bharat Verma: conceptualization, methodology, validation, investigation, writing—original draft, writing—review and editing, and visualization; Hari Raj: methodology, writing—review and editing, and investigation; Harsha Rajput: validation and investigation; Anjan Sil: conceptualization, methodology, validation, investigation, writing—original draft, writing—review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Anjan Sil.

Ethics declarations

Ethics approval and consent to participate

This declaration is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, B., Raj, H., Rajput, H. et al. Insights into the electrochemical properties of bagasse-derived hard carbon anode materials for sodium-ion battery. Ionics 29, 5205–5216 (2023). https://doi.org/10.1007/s11581-023-05240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05240-3

Keywords

Navigation