Skip to main content
Log in

N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Transition metal oxide MnFe2O4 is considered a promising anode material for Li-ion batteries owing to its high theoretical specific capacity. However, this material has two bottleneck problems, i.e., poor conductivity and serious volume expansion during cycling. In this work, MnFe2O4 nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. As a result, the N-doped carbon matrix enhances the electronic conductivity of the composites. The special porous structure increases the contact area between the electrode material and the electrolyte and facilitates the rapid infiltration of the electrolyte. At a calcination temperature of 400 °C, the MnFe2O4/C composite shows a high initial discharge specific capacity of 1207.0 mAh g−1 at 0.2 A g−1 and retains a reversible specific capacity of 1100.1 mAh g−1 after 200 cycles. The simple design of metal oxide nanomaterials encapsulated in N-doped porous carbon provides a new direction for improving the electrochemical performance of electrode materials for Li-ion batteries.

Graphical Abstract

A brief abstract: MnFe2O4 nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. At a calcination temperature of 400 °C, the MnFe2O4/C composite shows a high initial discharge specific capacity of 1207.0 mAh g−1 at 0.2 C and retains a reversible specific capacity of 1100.1 mAh g−1 after 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng, H., Shapter, J.G., Li, Y., Gao, G.: Recent progress of advanced anode materials of lithium1ion batteries. J. Energy Chem. 57, 451–468 (2021). https://doi.org/10.1016/j.jechem.2020.08.056

    Article  CAS  Google Scholar 

  2. Wang, F., Li, T., Fang, Y., Wang, Z., Zhu, J.: Heterogeneous structured Mn2O3/Fe2O3 composite as anode material for high performance lithium ion batteries. J. Alloys Compd. 857, 157531 (2021). https://doi.org/10.1016/j.jallcom.2020.157531

    Article  CAS  Google Scholar 

  3. Liu, Y., Sun, G., Cai, X., Yang, F., Ma, C., Xue, M., Tao, X.: Nanostructured strategies towards boosting organic lithium-ion batteries. J. Energy Chem. 54, 179–193 (2021). https://doi.org/10.1016/j.jechem.2020.05.021

    Article  CAS  Google Scholar 

  4. Okubo, M., Ko, S., Dwibedi, D., Yamada, A.: Designing positive electrodes with high energy density for lithium-ion batteries. J. Mater. Chem. A 9, 7407–7421 (2021). https://doi.org/10.1039/d0ta10252k

    Article  CAS  Google Scholar 

  5. Li, Z., Qiao, N., Nie, J., Zhao, J., Wang, J., Feng, X., Yao, S.: NiO/NiFe2O4 nanocubes derived from Prussian blue as anode materials for Li-ion batteries. Mater. Lett. 275, 128077 (2020). https://doi.org/10.1016/j.matlet.2020.128077

    Article  CAS  Google Scholar 

  6. Bao, S., Xiao, Y., Li, J., Yue, B., Li, Y., Sun, W., Liu, L., Huang, Y., Wang, L., Zhang, P., Lai, X.: Coral-like NiFe2O4/C composite as the high-performance anode material for lithium-ion batteries. Electron. Mater. Lett. 16, 207–215 (2020). https://doi.org/10.1007/s13391-020-00207-2

    Article  CAS  Google Scholar 

  7. Collins, G.A., Geaney, H., Ryan, K.M.: Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 9, 14172–14213 (2021). https://doi.org/10.1039/D1TA00998B

    Article  CAS  Google Scholar 

  8. Santhoshkumar, P., Kang, S.H., Shaji, N., Lee, C.W.: Incorporation of binary metal oxide and one dimensional carbon fiber hybrid nanocomposites for electrochemical energy storage applications. J. Alloys Compd. 842, 155649 (2020). https://doi.org/10.1016/j.jallcom.2020.155649

    Article  CAS  Google Scholar 

  9. Mei, C., Hou, S., Liu, M., Guo, Y., Liu, T., Li, J., Fu, W., Wang, L., Zhao, L.: MOF derived ZnFe2O4 nanoparticles scattered in hollow octahedra carbon skeleton for advanced lithium-ion batteries. Appl. Surf. Sci. 541, 148475 (2021). https://doi.org/10.1016/j.apsusc.2020.148475

    Article  CAS  Google Scholar 

  10. Li, Y., Meng, Y., Liu, X., Xiao, M., Hu, Q., Li, R., Ke, X., Ren, G., Zhu, F.: Double-protected zinc ferrite nanospheres as high rate and stable anode materials for lithium ion batteries. J. Power. Sour. 442, 227256 (2019). https://doi.org/10.1016/j.jpowsour.2019.227256

    Article  CAS  Google Scholar 

  11. Nie, J., Fu, H., Li, Z., Yao, S.: Using Prussian blue as a self-sacrificial template to construct MnO/MnFe2O4 microcubes as anodes for lithium-ion batteries. J. Alloys Compd. 882, 160693 (2021). https://doi.org/10.1016/j.jallcom.2021.160693

    Article  CAS  Google Scholar 

  12. Harsharaj, S.J., Hern, K., Jeong Gil, S.: Constructive designing of ternary metal oxide as an anode material for high performance lithium-ion batteries. Int. J. Energy Res. 45, 16592–16602 (2021). https://doi.org/10.1002/er.6905

    Article  CAS  Google Scholar 

  13. Fuyuan, G., Hongyan, C., Yue, C., Wei, Z., Zhimiao, L., Yunlong, X., Yaqian, W., Jiajing, Z., Huang, Z.: Dual-metal-organic frameworks derived manganese and zinc oxides nanohybrids as high performance anodes for lithium-ion batteries. J. Alloys Compd. 852, 156814 (2021). https://doi.org/10.1016/j.jallcom.2020.156814

    Article  CAS  Google Scholar 

  14. Tang, F., Sun, Y.-G., Dai, G.-X., Yan, J.-L., Lin, X.-J., Qiu, J.-H., Cao, A.-M.: Template-free synthesis of Co-based oxides nanotubes as potential anodes for lithium-ion batteries. J. Alloys Compd. 895, 162611 (2022). https://doi.org/10.1016/j.jallcom.2021.162611

    Article  CAS  Google Scholar 

  15. Liang, C., Chen, J., Yu, K., Jin, W.: ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries. J. Alloys Compd. 878, 160445 (2021). https://doi.org/10.1016/j.jallcom.2021.160445

    Article  CAS  Google Scholar 

  16. Deng, Z.: A fluorine-doped MnFe2O4 nanorod/carbon composite as an anode material for high-performance lithium-ion batteries. Int. J. Electrochem. Sci. 15, 4203–4217 (2020). https://doi.org/10.20964/2020.05.62

    Article  CAS  Google Scholar 

  17. Gong, L., Chen, G., Lv, J., Lu, M., Zhang, J., Wu, X., Wang, J.: Phase transition-enabled MnFe2O4 nanoparticles modulated by high-pressure with enhanced electrical transport properties. Appl. Surf. Sci. 565, 150532 (2021). https://doi.org/10.1016/j.apsusc.2021.150532

    Article  CAS  Google Scholar 

  18. Rajalakshmi, R., Remya, K.P., Viswanathan, C., Ponpandian, N.: Enhanced electrochemical activities of morphologically tuned MnFe2O4 nanoneedles and nanoparticles integrated on reduced graphene oxide for highly efficient supercapacitor electrodes. Nanoscale Adv. 3, 2887–2901 (2021). https://doi.org/10.1039/d1na00144b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y., Zhang, N., Yu, C., Jiao, L., Chen, J.: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16, 3321–3328 (2016). https://doi.org/10.1021/acs.nanolett.6b00942

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, C., Jin, C., Teng, G., Gu, Y., Ma, W.: Controllable synthesis of hollow MnFe2O4 by self-etching and its application in high-performance anode for lithium-ion batteries. Chem. Eng. J. 365, 121–131 (2019). https://doi.org/10.1016/j.cej.2019.02.004

    Article  CAS  Google Scholar 

  21. Wang, N., Ma, X., Wang, Y., Yang, J., Qian, Y.: Porous MnFe2O4 microrods as advanced anodes for Li-ion batteries with long cycle lifespan. J. Mater. Chem. A 3, 9550–9555 (2015). https://doi.org/10.1039/c5ta00828j

    Article  CAS  Google Scholar 

  22. Duan, L., Wang, Y., Wang, L., Zhang, F., Wang, L.: Mesoporous MFe2O4 (M=Mn Co, and Ni) for anode materials of lithium-ion batteries: synthesis and electrochemical properties. Mater. Res. Bull. 61, 195–200 (2015). https://doi.org/10.1016/j.materresbull.2014.10.035

    Article  CAS  Google Scholar 

  23. Wu, K., Hu, G., Cao, Y., Peng, Z., Du, K.: Facile and green synthesis of MnFe2O4/reduced graphene oxide nanocomposite as anode materials for Li-ion batteries. Mater. Lett. 161, 178–180 (2015). https://doi.org/10.1016/j.matlet.2015.08.100

    Article  CAS  Google Scholar 

  24. Zhao, T., Ji, R., Meng, Y.: Foamed porous structure Fe-Mn oxides/C composites as novel anode materials of lithium-ion batteries. J. Alloys Compd. 882, 160643 (2021). https://doi.org/10.1016/j.jallcom.2021.160643

    Article  CAS  Google Scholar 

  25. Kim, H., Lee, J.W., Byun, D., Choi, W.: Coaxial-nanostructured MnFe2O4 nanoparticles on polydopamine-coated MWCNT for anode materials in rechargeable batteries. Nanoscale 10, 18949–18960 (2018). https://doi.org/10.1039/c8nr04555k

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X., Li, X., Sun, Y., Zhang, S., Wu, Y.: Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode. Appl. Surf. Sci. 479, 318–325 (2019). https://doi.org/10.1016/j.apsusc.2019.02.098

    Article  CAS  Google Scholar 

  27. Jiang, F., Du, X., Zhao, S., Guo, J., Huang, B., Huang, X., Su, Q., Zhang, J., Du, G.: Preparation of carbon-coated MnFe2O4 nanospheres as high-performance anode materials for lithium-ion batteries. J. Nanopart. Res. 17, 173 (2015). https://doi.org/10.1007/s11051-015-2988-3

    Article  CAS  Google Scholar 

  28. Liu, R., Chen, X., Zhou, C., Li, A., Gong, Y., Muhammad, N., Song, H.: Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties. Electrochim. Acta 306, 143–150 (2019). https://doi.org/10.1016/j.electacta.2019.03.129

    Article  CAS  Google Scholar 

  29. Chao, Z., Leiqiang, Z., Ze, Z., Jianxin, C., Zhenyu, Y., Ji, Y.: Synthesis of the SnO2@C@GN hollow porous microspheres with superior cyclability for Li-ion batteries. Chem. Phys. Lett. 772, 138566 (2021). https://doi.org/10.1016/j.cplett.2021.138566

    Article  CAS  Google Scholar 

  30. Li, W., An, C., Guo, H., Zhang, Y., Chen, K., Zhang, Z., Liu, G., Liu, Y., Wang, Y.: The encapsulation of MnFe2O4 nanoparticles into the carbon framework with superior rate capability for lithium-ion batteries. Nanoscale 12, 4445–4451 (2020). https://doi.org/10.1039/C9NR10002D

    Article  CAS  PubMed  Google Scholar 

  31. Murugesan, C., Ugendar, K., Okrasa, L., Shen, J., Chandrasekaran, G.: Zinc substitution effect on the structural, spectroscopic and electrical properties of nanocrystalline MnFe2O4 spinel ferrite. Ceram. Int. 47, 1672–1685 (2021). https://doi.org/10.1016/j.ceramint.2020.08.284

    Article  CAS  PubMed  Google Scholar 

  32. Wu, F., Huang, R., Mu, D., Wu, B., Chen, S.: New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 19254–19264 (2014). https://doi.org/10.1021/am505290f

    Article  CAS  PubMed  Google Scholar 

  33. Amine, K., Belharouak, I., Chen, Z., Tran, T., Yumoto, H., Ota, N., Myung, S.-T., Sun, Y.-K.: Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater. 22, 3052–3057 (2010). https://doi.org/10.1002/adma.201000441

    Article  CAS  PubMed  Google Scholar 

  34. Tang, H., Gao, P., Xing, A., Tian, S., Bao, Z.: One-pot low-temperature synthesis of a MnFe2O4–graphene composite for lithium ion battery applications. RSC Adv. 4, 28421–28425 (2014). https://doi.org/10.1039/C4RA04995K

    Article  CAS  Google Scholar 

  35. Zhang, W., Fu, Y., Liu, W., Lim, L., Wang, X., Yu, A.: A general approach for fabricating 3D MFe2O4 (M=Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 57, 48–56 (2019). https://doi.org/10.1016/j.nanoen.2018.12.005

    Article  CAS  Google Scholar 

  36. Wen, Q., Zhang, S., Sun, M., Jin, R.: Fabrication of MnFe2O4 and MnCO3 nanoparticles anchored on amorphous carbon-coated carbon nanotubes for high-performance lithium batteries and supercapacitors. NANO 13, 1850050 (2018). https://doi.org/10.1142/s1793292018500509

    Article  CAS  Google Scholar 

  37. Zhong, M., Yang, D., Xie, C., Zhang, Z., Zhou, Z., Bu, X.-H.: Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12, 5564–5571 (2016). https://doi.org/10.1002/smll.201601959

    Article  CAS  PubMed  Google Scholar 

  38. Xiao, Y., Zai, J., Tao, L., Li, B., Han, Q., Yu, C., Qian, X.: MnFe2O4–graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 15, 3939–3945 (2013). https://doi.org/10.1039/C3CP50220A

    Article  CAS  PubMed  Google Scholar 

  39. Lu, W., Wang, J., Zhao, L., Hu, C., Zhang, X., Duan, L.: The double synergies of core-shell MnFe2O4@TiO2 mesoporous spheres for enhancing electrochemical performance of anode material as lithium-ion batteries. Mater. Sci. Eng. B 242, 17–22 (2019). https://doi.org/10.1016/j.mseb.2019.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province (226Z4405G) and Natural Science Foundation of Hebei Education Department (BJ2020046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taolin Zhao.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Zhang, X., Liu, Z. et al. N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries. Electron. Mater. Lett. 20, 317–325 (2024). https://doi.org/10.1007/s13391-023-00477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00477-6

Keywords

Navigation