Skip to main content
Log in

Recent Progress of Gr/Si Schottky Photodetectors

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

By combing the carrier mobility of graphene with the excellent light absorption properties of silicon, ultra-shallow Schottky junction can be obtained, and can exist stably for a long time. The photoelectric property of Schottky junction is determined not only by graphene and silicon semiconductor layer, but also by the interface layer between the two. Through a series of optimizations, the performance of graphene/silicon Schottky junction photodetectors can be continuously improved. As a result, graphene/silicon Schottky junctions more promising for the development of next generation photodetectors with its stability, ease of preparation and sensitivity. In this review, we firstly give a brief introduction to Gr Schottky junction photodetectors, and then present a comprehensive review on the recent progress of optimizing Gr/Si Schottky junction photodetectors in the past few years, including light management engineering, band engineering and interfacial engineering. Finally, the current challenges are summarized and further perspectives are outlined.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Tian, W., Wang, Y.D., Chen, L., Li, L.: Self-powered nanoscale photodetectors. Small 13, 45 (2017)

    Article  Google Scholar 

  2. Tao, H., Zhao, Y., Zhang, X., Lin, W., Fu, K., Chi, S., Shi, F., Ding, X., Yu, G., Kai, Z.J.N.: Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics 7, 1557 (2018)

    Article  Google Scholar 

  3. Ma, K., Zhao, Y., Xu, X., Hou, H.J.M.R.E.: Corrigendum: grain refinement mechanism at high undercooling of Ni80Cu20 alloy. Mater. Res. Express 6, 089502 (2019)

    Article  Google Scholar 

  4. Kanae, S., Taiki, K., Nozomi, I., Ayumi, K., Toshitada, Y.: Cover feature: fluorescence quenching-based assay for measuring Golgi endo-α-Mannosidase. Chem. Asian J. 14, 1887 (2019)

    Article  Google Scholar 

  5. Li, X.M., Zhu, M., Du, M.D., Lv, Z., Zhang, L., Li, Y.C., Yang, Y., Yang, T.T., Li, X., Wang, K.L., Zhu, H.W., Fang, Y.: High detectivity grapheme–silicon heterojunction photodetector. Small 12, 595 (2016)

    Article  CAS  Google Scholar 

  6. Zhu, Z.W., Wang, Z.X., Cheng, C.T., Li, D.C., Chen, H.D.: High-performance graphene/Si hybrid photodetector with a PMMA coating layer. Mater. Lett. 289, 129393 (2021)

    Article  CAS  Google Scholar 

  7. Qu, Z., Nedeljkovic, M., Wu, Y., Penades, J.S., Khokhar, A.Z., Cao, W., Osman, A.M., Qi, Y., Aspiotis, N.K., Morgan, K.A., Huang, C.C., Mashanovich, G.Z.: Waveguide integrated graphene mid-infrared photodetector. Silicon Photonics XIII 10537, 211–215 (2018)

    Google Scholar 

  8. Periyanagounder, D., Gnanasekar, P., Varadhan, P., He, J.H., Kulandaivel, J.: High performance, self- powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C. 6, 9545 (2018)

    Article  CAS  Google Scholar 

  9. Pospischil, A., Furchi, M.M., Mueller, T.: Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257 (2014)

    Article  CAS  Google Scholar 

  10. Long, M.S., Wang, P., Fang, H.H., Hu, W.D.: Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019)

    Article  Google Scholar 

  11. Ahmed, S.Z., Ganguly, S., Yuan, Y., Zheng, J.Y., Tan, Y.H., Campbell, J.C., Ghosh, A.W.: A physics based multiscale compact model of p-i-n avalanche photodiodes. J. Lightwave Technol. 39, 3591 (2021)

    Article  CAS  Google Scholar 

  12. Wang, Y.M., Yang, S.M., Ballesio, A., Parmeggiani, M., Verna, A., Cocuzza, M., Pirri, C.F., Marasso, S.L.: The fabrication of Schottky photodiode by monolayer graphene direct-transfer-on-silicon. J. Appl. Phys. 128, 014501 (2020)

    Article  CAS  Google Scholar 

  13. Bhardwaj, S., Parashar, P.K., Roopak, S., Ji, A., Uma, R., Sharma, R.P.: Mediating broadband light into grapheme–silicon Schottky photodiodes by asymmetric silver nanospheroids: effect of shape anisotropy. J. Phys. D Appl. Phys. 51, 17 (2018)

    Article  Google Scholar 

  14. Riazimehr, S., Belete, M., Kataria, S., Engstrom, O., Lemme, M.C.: Capacitance–Voltage (C–V) characterization of grapheme–silicon heterojunction photodiodes. Adv. Opt. Mater. 8, 13 (2020)

    Article  Google Scholar 

  15. Qiao, K.K., Deng, H., Yang, X.K., Dong, D.D., Li, M., Hu, L., Liu, H., Song, H.S., Tang, J.: Spectra-selective PbS quantum dot infrared photodetectors. Nanoscale 8, 7137 (2016)

    Article  CAS  Google Scholar 

  16. Iqbal, M.Z., Alam, S., Faisal, M.M., Khan, S.: Recent advancement in the performance of solar cells by incorporating transition metal dichalcogenides as counter electrode and photoabsorber. Int. J. Energy Res. 43, 3058 (2019)

    Article  Google Scholar 

  17. Wang, Z., Hemmetter, A., Uzlu, B., Saeed, M., Hamed, A., Kataria, S., Negra, R., Neumaier, D., Lemme, M.C.: Graphene in 2D/3D heterostructure diodes for high performance electronics and optoelectronics. Adv. Electron. Mater. 7, 2001210 (2021)

    Article  CAS  Google Scholar 

  18. Wan, X., Xu, Y., Guo, H.W., Shehzad, K., Ali, A., Liu, Y., Yang, J.Y., Dai, D.X., Lin, C.T., Liu, L.W., Cheng, H.C., Wang, F.Q., Wang, X.M., Lu, H., Hu, W.D., Pi, X.D., Dan, Y.P., Luo, J.K., Hasan, T., Duan, X.F., Li, X.M., Xu, J.B., Yang, D.R., Ren, T.L., Yu, B.: A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. Appl. 1, 4 (2017)

    Article  Google Scholar 

  19. Bhopal, M.F., Lee, D.W., Rehman, A.U., Lee, S.H.: Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C. 5, 10701 (2017)

    Article  CAS  Google Scholar 

  20. Jia, K.C., Zhang, J.C., Lin, L., Li, Z.Z., Gao, J., Sun, L.Z., Xue, R.W., Li, J.Y., Kang, N., Luo, Z.T., Rummeli, M.H., Peng, H.L., Liu, Z.F.: Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 141, 7670 (2019)

    Article  CAS  Google Scholar 

  21. Sarkar, S., Bekyarova, E., Haddon, R.C.: Chemistry at the Dirac point: Diels-Alder reactivity of graphene. Acc. Chem. Res. 45, 673 (2012)

    Article  CAS  Google Scholar 

  22. Mohammed, M., Li, Z.R., Cui, J.B., Chen, T.P.: Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  23. Zhang, Z.X., Guo, Y.X., Wang, X.J., Li, D., Wang, F.L., Xie, S.S.: Direct growth of nanocrystalline graphene/graphite transparent electrodes on Si/SiO2 for metal-free Schottky junction photodetectors. Adv. Funct. Mater. 24, 835 (2014)

    Article  CAS  Google Scholar 

  24. Xie, C., Lv, P., Nie, B.A., Jie, J.S., Zhang, X.W., Wang, Z., Jiang, P., Hu, Z.Z., Luo, L.B., Zhu, Z.F., Wang, L., Wu, C.Y.: Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 99, 133113 (2011)

    Article  Google Scholar 

  25. Feng, T.T., Xie, D., Lin, Y.X., Zang, Y.Y., Ren, T.L., Song, R., Zhao, H.M., Tian, H., Li, X., Zhu, H.W., Liu, L.T.: Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl. Phys. Lett. 99, 233505 (2011)

    Article  Google Scholar 

  26. Deshmukh, M.A., Park, S.J., Hedau, B.S., Ha, T.J.: Recent progress in solar cells based on carbon nanomaterials. Sol. Energy 220, 953 (2021)

    Article  CAS  Google Scholar 

  27. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  28. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  CAS  Google Scholar 

  29. Mak, K.F., Ju, L., Wang, F., Heinz, T.F.: Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341 (2012)

    Article  CAS  Google Scholar 

  30. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., Van Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571 (2007)

    Article  CAS  Google Scholar 

  31. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491 (2008)

    Article  CAS  Google Scholar 

  32. Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009)

    Article  CAS  Google Scholar 

  33. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  CAS  Google Scholar 

  34. Long, M.S., Wang, P., Fang, H.H., Hu, W.D.: Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 28 (2019)

    Article  Google Scholar 

  35. Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014)

    Article  CAS  Google Scholar 

  36. Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nano. Lett. 8, 3498 (2008)

    Article  CAS  Google Scholar 

  37. Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  CAS  Google Scholar 

  38. Kovacevic, G., Phare, C., Set, S.Y., Lipson, M., Yamashita, S.: Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide. Appl. Phys. Express 11, 5 (2018)

    Article  Google Scholar 

  39. Shen, J., Liu, X.Z., Song, X.F., Li, X.M., Wang, J., Zhou, Q., Luo, S., Feng, W.L., Wei, X.Z., Lu, S.R., Feng, S.L., Du, C.L., Wang, Y.F., Shi, H.F., Wei, D.P.: High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale 9, 6020 (2017)

    Article  CAS  Google Scholar 

  40. Kim, J., Oh, S.D., Kim, J.H., Shin, D.H., Kim, S., Choi, S.H.: Graphene/Si-nanowire heterostructure molecular sensors. Sci. Rep. 4, 5 (2014)

    Google Scholar 

  41. Zhao, Y., Li, X.G., Zhou, X., Zhang, Y.N.: Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuator B Chem. 231, 324 (2016)

    Article  CAS  Google Scholar 

  42. Kim, J.M., Kim, S., Shin, D.H., Seo, S.W., Lee, H.S., Kim, J.H., Jang, C.W., Kang, S.S., Choi, S.H., Kwak, G.Y., Kim, K.J., Lee, H., Lee, H.: Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43, 124 (2018)

    Article  CAS  Google Scholar 

  43. Zhang, X., Tian, L.L., Diao, D.F.: High-response heterojunction phototransistor based on vertically grown graphene nanosheets film. Carbon 172, 720 (2021)

    Article  CAS  Google Scholar 

  44. Sinclair, R.C., Suter, J.L., Coveney, P.V.: Micromechanical exfoliation of graphene on the atomistic scale. Phys. Chem. Chem. Phys. 21, 5716 (2019)

    Article  CAS  Google Scholar 

  45. Yi, M., Shen, Z.G.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 3, 11700 (2015)

    Article  CAS  Google Scholar 

  46. Hassan, A., Tzedakis, T.: Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. J. Energy Storage 26, 100967 (2019)

    Article  Google Scholar 

  47. Abbas, A., Eng, X.E., Ee, N., Saleem, F., Wu, D., Chen, W.Q., Handayani, M., Tabish, T.A., Wai, N., Lim, T.M.: Development of reduced graphene oxide from biowaste as an electrode material for vanadium redox flow battery. J. Energy Storage 41, 102848 (2021)

    Article  Google Scholar 

  48. Lee, N.E., Lee, S.Y., Lim, H.S., Yoo, S.H., Cho, S.O.: A novel route to high-quality graphene quantum dots by hydrogen-assisted pyrolysis of silicon carbide. Nanomaterials 10, 277 (2020)

    Article  CAS  Google Scholar 

  49. Kolomiytsev, A.S., Jityaev, I.L., Svetlichnyi, A.M., Fedotov, A.A., Ageev, O.A.: Nanoscale profiling of multilayer graphene films on silicon carbide by a focused ion beam. Diam. Relat. Mater. 108, 107969 (2020)

    Article  CAS  Google Scholar 

  50. Saeed, M., Alshammari, Y., Majeed, S.A., Al-Nasrallah, E.: Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules 25, 3856 (2020)

    Article  CAS  Google Scholar 

  51. Cho, S., Lee, J.S., Jang, H., Park, S., An, J.H., Jang, J.: Comparative studies on crystallinity, thermal and mechanical properties of polyketone grown on plasma treated CVD graphene. Polymers 13, 919 (2021)

    Article  CAS  Google Scholar 

  52. Lee, H.C., Bong, H., Yoo, M.S., Jo, M., Cho, K.: Copper-vapor-assisted growth and defect-healing of graphene on copper surfaces. Small 14, 1801181 (2018)

    Article  Google Scholar 

  53. Huang, M., Ruoff, R.S.: Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Accounts Chem. Res. 53, 800 (2020)

    Article  CAS  Google Scholar 

  54. Kim, D.J., Truong, Q.T., Kim, J.I., Suh, Y., Moon, J., Lee, S.E., Hong, B.H., Woo, Y.S.: Ultrahigh-strength multi-layer graphene-coated Ni film with interface-induced hardening. Carbon 178, 497 (2021)

    Article  CAS  Google Scholar 

  55. Alnuaimi, A., Almansouri, I., Saadat, I., Nayfeh, A.: High performance grapheme–silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol. Energy 164, 174 (2018)

    Article  CAS  Google Scholar 

  56. Song, L.H., Yu, X.G., Yang, D.R.: A review on grapheme–silicon Schottky junction interface. J. Alloys Compd. 806, 63 (2019)

    Article  CAS  Google Scholar 

  57. Di Bartolomeo, A., Luongo, G., Giubileo, F., Funicello, N., Niu, G., Schroeder, T., Lisker, M., Lupina, G.: Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials 4, 025075 (2017)

    Article  Google Scholar 

  58. Huang, K., Yan, Y.C., Li, K., Khan, A., Zhang, H., Pi, X.D., Yu, X.G., Yang, D.R.: High and fast response of a graphene–silicon photodetector coupled with 2D fractal platinum nanoparticles. Adv. Opt. Mater. 6, 1700793 (2018)

    Article  Google Scholar 

  59. Huang, K., Yu, X.G., Cong, J.K., Yang, D.R.: Progress of grapheme–silicon heterojunction photovoltaic devices. Adv. Mater. Interfaces 5, 1801520 (2018)

    Article  Google Scholar 

  60. Cui, G., Bi, Z.X., Zhang, R.Y., Liu, J.G., Yu, X., Li, Z.L.: A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 373, 104 (2019)

    Article  CAS  Google Scholar 

  61. Wang, Y., Li, S.S., Yang, H.Y., Luo, J.: Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 10, 15328 (2020)

    Article  Google Scholar 

  62. Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., Tan, W.K., Kar, K.K., Matsuda, A.: Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

  63. Cao, X., Tan, C., Sindoro, M., Zhang, H.: Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660 (2017)

    Article  CAS  Google Scholar 

  64. Islam, M.S., Sultana, J., Biabanifard, M., Vafapour, Z., Nine, M.J., Dinovitser, A., Cordeiro, C.M.B., Ng, B.W.H., Abbott, D.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559 (2020)

    Article  CAS  Google Scholar 

  65. Wang, Q., Jing, J.Y., Wang, B.T.: Highly sensitive SPR biosensor based on graphene oxide and staphylococcal protein A Co-modified TFBG for human IgG detection. IEEE Trans. Instrum. Meas. 68, 3350 (2019)

    Article  CAS  Google Scholar 

  66. Guo, J.S., Li, J., Liu, C.Y., Yin, Y.L., Wang, W.H., Ni, Z.H., Fu, Z.L., Yu, H., Xu, Y., Shi, Y.C., Ma, Y.G., Gao, S.M., Tong, L.M., Dai, D.X.: High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl. 9, 29 (2020)

    Article  CAS  Google Scholar 

  67. Li, J.F., Zhang, Y.J., Ding, S.Y., Panneerselvam, R., Tian, Z.Q.: Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002 (2017)

    Article  CAS  Google Scholar 

  68. Hu, C., Dong, D.D., Yang, X.K., Qiao, K.K., Yang, D., Deng, H., Yuan, S.J., Khan, J., Lan, Y., Song, H.S., Tang, J.: Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 27, 8 (2017)

    Article  Google Scholar 

  69. Zhang, H., Duan, S., Radjenovic, P.M., Tian, Z.Q., Li, J.F.: Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 53, 729 (2020)

    Article  CAS  Google Scholar 

  70. Liu, Y., Cheng, R., Liao, L., Zhou, H., Bai, J., Liu, G., Liu, L., Huang, Y., Duan, X.J.N.C.: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011)

    Article  Google Scholar 

  71. Ming, H., Yucong, Y., Kun, H., Afzal, K., Xiaodong, Q.: Materials, performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect. Adv. Opt. Mater. 6, 1701243 (2018)

    Article  Google Scholar 

  72. Chen, Z.F., Li, X.M., Wang, J.Q., Tao, L., Long, M.Z., Liang, S.J., Ang, L.K., Shu, C., Tsang, H.K., Xu, J.B.: Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11, 430 (2017)

    Article  CAS  Google Scholar 

  73. Liu, Y., Huang, W., Gong, T., Su, Y., Zhang, H., He, Y., Liu, Z., Yu, B.J.N.: Ultra-sensitive near-infrared graphene photodetector with nanopillar antennas. Nanoscale 9, 17459 (2017)

    Article  CAS  Google Scholar 

  74. Chaliyawala, H., Aggarwal, N., Purohit, Z., Patel, R., Gupta, G., Jaffre, A., Le Gall, S., Ray, A., Mukhopadhyay, I.: Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (camphor)/Si-nanowire Schottky junction. J. Nanotechnol. 31, 225208 (2020)

    Article  CAS  Google Scholar 

  75. Zhou, M., Qiu, H., He, T., Zhang, J., Zhao, Y.J.P.S.S.: Ultraviolet photodetector based on vertical (Al, Ga)N nanowires with graphene electrode and Si substrate. Phys. Status Solidi 217, 2000061 (2020)

    Article  CAS  Google Scholar 

  76. Zakaria, R., Tan, C.L., Zulkifli, N., Park, K., Min, J.W.: A highly sensitive, large area, and self- powered UV photodetector based on coalesced gallium nitride nanorods/graphene/silicon (111) heterostructure. Appl. Phys. Lett. 117, 191103 (2020)

    Article  Google Scholar 

  77. Kim, J., Joo, S.S., Lee, K.W., Kim, J.H., Shin, D.H., Kim, S., Choi, S.H.: Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Interfaces 6, 20880 (2014)

    Article  CAS  Google Scholar 

  78. Shen, J., Liu, X., Song, X., Li, X., Wei, D.J.N.: High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale 9, 6020 (2017)

    Article  CAS  Google Scholar 

  79. Haidar, I., Day, A., Decorse, P., Lau-Truong, S., Chevillot-Biraud, A., Aubard, J., Félidj, N., Boubekeur-Lecaque, L.: Tailoring the shape of anisotropic core–shell Au–Ag nanoparticles in dimethyl sulfoxide. Chem. Mater. 31, 2741 (2019)

    Article  CAS  Google Scholar 

  80. Wang, H., Carbon, Y.F.J.: Graphene-nanowalls/silicon hybrid heterojunction photodetectors—ScienceDirect. Carbon 162, 181 (2020)

    Article  CAS  Google Scholar 

  81. Kim, M., Kang, P., Leem, J., Nam, S.: A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058 (2017)

    Article  CAS  Google Scholar 

  82. Gan, X.T., Shiue, R.J., Gao, Y.D., Meric, I., Heinz, T.F., Shepard, K., Hone, J., Assefa, S., Englund, D.: Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883 (2013)

    Article  CAS  Google Scholar 

  83. Goykhman, I., Sassi, U., Desiatov, B., Mazurski, N., Milana, S., De Fazio, D., Eiden, A., Khurgin, J., Shappir, J., Levy, U., Ferrari, A.C.: On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005 (2016)

    Article  CAS  Google Scholar 

  84. Wang, X.M., Cheng, Z.Z., Xu, K., Tsang, H.K., Xu, J.B.: High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888 (2013)

    Article  CAS  Google Scholar 

  85. Gao, Y., Tao, L., Tsang, H.K., Shu, C.: Graphene-on-silicon nitride waveguide photodetector with interdigital contacts. Appl. Phys. Lett. 112, 5 (2018)

    Article  Google Scholar 

  86. Gong, M., Liu, Q., Cook, B., Kattel, B., Wang, T., Chan, W.L., Ewing, D., Casper, M., Stramel, A., Wu, J.Z.: All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano 4, 4114 (2017)

    Article  Google Scholar 

  87. Yu, T., Wang, F., Xu, Y., Ma, L., Pi, X., Yang, D.: Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater. Interfaces 28, 4912 (2016)

    Article  CAS  Google Scholar 

  88. Hu, X., Zhu, W., Zhao, M., Wang, G., Ding, G.: Graphene quantum dots promoted the synthesis of heavily n-type graphene for near-infrared photodetectors. J. Phys. Chem. C 124, 1674 (2019)

    Article  Google Scholar 

  89. Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    Article  CAS  Google Scholar 

  90. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  91. Wang, H.C., Fu, Y.Q.: Graphene-nanowalls/silicon hybrid heterojunction photodetectors. Carbon 162, 181 (2020)

    Article  CAS  Google Scholar 

  92. Li, X.Q., Chen, W.C., Zhang, S.J., Wu, Z.Q., Wang, P., Xu, Z.J., Chen, H.S., Yin, W.Y., Zhong, H.K., Lin, S.S.: 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 16, 310 (2015)

    Article  CAS  Google Scholar 

  93. Wen, L., Gao, F.L., Yu, Y.F., Xu, Z.Z., Liu, Z.K., Gao, P., Zhang, S.G., Li, G.Q.: Enhancing the photovoltaic performance of GaAs/graphene Schottky junction solar cells by interfacial modification with self assembled alkyl thiol monolayer. J. Mater. Chem. A 6, 11 (2018)

    Article  Google Scholar 

  94. Selvi, H., Unsuree, N., Whittaker, E., Halsall, M., Hill, E.W., Echtermeyer, T.J.: Towards substrate engineering of grapheme–silicon Schottky diode photodetectors. Nanoscale 10, 3399 (2018)

    Article  CAS  Google Scholar 

  95. Wang, Y.M., Yang, S.M., Lambada, D.R., Shafique, S.: A graphene–silicon Schottky photodetector with graphene oxide interlayer. Sens. Actuator A Phys. 314, 7 (2020)

    Article  Google Scholar 

  96. Liu, Y., Wang, F., Wang, X., Wang, X., Flahaut, E., Liu, X., Li, Y., Wang, X., Xu, Y., Shi, Y.J.N.C.: Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015)

    Article  CAS  Google Scholar 

  97. Cai, B.F., Su, Y.J., Tao, Z.J., Hu, J., Zou, C., Yang, Z., Zhang, Y.F.: Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv. Opt. Mater. 6, 7 (2018)

    Google Scholar 

  98. Zhang, Y., Deng, T., Li, S.S., Sun, J.Y., Yin, W.J., Fang, Y., Liu, Z.W.: Highly sensitive ultraviolet photodetectors based on single wall carbon nanotube-graphene hybrid films. Appl. Surf. Sci. 512, 7 (2020)

    Article  Google Scholar 

  99. Herrera-Reinoza, N., Santos, A., Lima, L., Landers, R., Siervo, A.: Atomically precise bottom-up synthesis of hbnc: graphene doped with hbn nanoclusters. Chem. Mater. 33, 2871 (2021)

    Article  CAS  Google Scholar 

  100. Jin, C.J., Rasmussen, F.A., Thygesen, K.S.: Tuning the Schottky barrier at the graphene/MoS2 interface by electron doping: density functional theory and many-body calculations. J. Mater. Chem. C 119, 19928 (2015)

    CAS  Google Scholar 

  101. Casalino, M., Sassi, U., Goykhman, I., Eiden, A., Lidorikis, E., Milana, S., Fazio, D.D., Tomarchio, F., Iodice, M., Coppola, G.: Vertically-illuminated, resonant-cavity-enhanced, grapheme–silicon Schottky photodetectors. ACS Nano 11, 10955 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong Province with Grant Nos. ZR2020QE048 and ZR2019BEM031; National Natural Science Foundation of China with Grant No. 52073305.

Author information

Authors and Affiliations

Authors

Contributions

QS had the idea for the article, HQ, CL performed the literature search and data analysis of light management engineering section, KC, JD do the same for the section of band engineering, NC and XZ do the same for the interfacial engineering, XL do the same for the first-principle analysis section and QS drafted the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingguo Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q., Qi, H., Li, C. et al. Recent Progress of Gr/Si Schottky Photodetectors. Electron. Mater. Lett. 19, 121–137 (2023). https://doi.org/10.1007/s13391-022-00384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00384-2

Keywords

Navigation