Skip to main content
Log in

Graphene/InP Schottky junction near-infrared photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene and P-type indium phosphide (P-InP) could be combined by van der Waals forces to form a Schottky junction, which can be applied in photodetection. This study reported a graphene/P-InP Schottky junction near-infrared photodetector with a 3-nm-thick \({\text{Al}}_{2} {\text{O}}_{3}\) passivation layer and investigated the photoelectric characteristics of such device. As a result, the near-infrared photodetector had a Schottky barrier of 0.89 eV. Besides, this device had a significant response to the wavelength of 808 nm near-infrared light with responsivity and detectivity up to 5.2 mA/W and \(1.3 \times 10^{10} \;{\text{cm Hz}}^{1/2} \;{\text{W}}^{ - 1}\), respectively, under a reverse bias voltage of 0.4 V. It is expected that the Graphene/P-InP Schottky junction near-infrared photodetector with an \({\text{Al}}_{2} {\text{O}}_{3}\) passivation layer may play a vital role in the field of optoelectronic devices in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017)

    Article  ADS  Google Scholar 

  2. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  3. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  4. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  5. J.W. Jiang, J.S. Wang, B. Li, Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B. 80, 113405 (2009)

    Article  ADS  Google Scholar 

  6. S. Srisonphan, Hybrid graphene−Si-based nanoscale vacuum field effect phototransistors. ACS Photonics 3, 1799–1808 (2016)

    Google Scholar 

  7. D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.H. He, J. Kulandaivel, High performance, self-powered photodetectors based on graphene/silicon Schottky junction diode. J. Mater. Chem. C 6, 9545–9551 (2018)

    Article  Google Scholar 

  8. D. Sinha, J.U. Lee, Ideal graphene/silicon Schottky junction diodes. Nano Lett. 14, 4660–4664 (2014)

    Article  ADS  Google Scholar 

  9. W.Y. Kong, G.A. Wu, K.Y. Wang, T.F. Zhang, Y.F. Zou, D.D. Wang, L.B. Luo, Graphene–β-Ca2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 28, 10725–10731 (2016)

    Article  Google Scholar 

  10. L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu, C.Y. Wu, L. Wang, J.G. Hu, C. Xie, F.X. Liang, L.B. Luo, Monolayer graphene/germanium schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces. 5, 9362–9366 (2013)

    Article  Google Scholar 

  11. L.B. Luo, J.J. Chen, M.Z. Wang, H. Hu, C.Y. Wu, Q. Li, L. Wang, J.A. Huang, F.X. Liang, Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction. Adv. Funct. Mater. 24, 2794–2800 (2014)

    Article  Google Scholar 

  12. L.B. Luo, H. Hu, X.H. Wang, R. Lu, Y.F. Zou, Y.Q. Yu, F.X. Liang, A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 3, 4723–4728 (2015)

    Article  Google Scholar 

  13. Y. Wu, X. Yan, X. Zhang, X.M. Ren, A monolayer graphene/GaAs nanowire array Schottky junction self-powered photodetector. Appl. Phys. Lett. 109, 183101 (2016)

    Article  ADS  Google Scholar 

  14. A. Nematpour, M. Nikoufard, Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods. J. Adv. Res. 10, 15–20 (2018)

    Article  Google Scholar 

  15. C. Xie, Y. Wang, Z.X. Zhang, D. Wang, L.B. Luo, Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19, 41–83 (2018)

    Article  Google Scholar 

  16. X. Li, H.Y. Zhang, J.J. Yin, L. Liu, J.B. Xu, M. Li, T.C. Ye, M. Gong, Research of breakdown characteristic of InP composite channel HEMT. Acta Phys. Sin. 56, 4117–4121 (2007)

    Google Scholar 

  17. P. Wang, X.Q. Li, Z.J. Xu, Z.Q. Wu, S.J. Zhang, W.L. Xu, H.K. Zhong, H.S. Chen, E.P. Li, J.K. Luo, Q.K. Yu, S.S. Lin, Tunable graphene/indium phosphide heterostructure solar cells. Nano Energy 13, 509–517 (2015)

    Article  Google Scholar 

  18. D.W. Wu, R. Jia, D.Q. Wu, W.C. Ding, W. Chen, C. Chen, H.H. Yue, X.Y. Liu, B.Q. Chen, Al2O3 passivation for crystalline silicon solar cells. Micronanoelectron. Technol. 48, 528–535 (2011)

    Google Scholar 

  19. M.A. Rehman, I. Akhtar, W. Choi, K. Akbar, A. Farooq, S. Hussain, M.A. Shehzad, S.H. Chun, J. Jung, Y. Seo, Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon 132, 157–164 (2018)

    Article  Google Scholar 

  20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  Google Scholar 

  21. D.Y. Wang, I.S. Huang, P.H. Ho, S.S. Li, Y.C. Yeh, D.W. Wang, W.L. Chen, Y.Y. Lee, Y.M. Chang, C.C. Chen, C.T. Liang, C.W. Chen, Clean-lifting transfer of large-area residual-free graphene films. Adv Mater 25, 4521–4526 (2013)

    Article  Google Scholar 

  22. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9, 4359–4363 (2009)

    Article  ADS  Google Scholar 

  23. Y.Q. Liu, Graphene: From Basics to Applications, 1st edn. (Chemical Industry Press, Beijing, 2017), p. 19

    Google Scholar 

  24. J.J. Zheng, Y.R. Wang, K.H. Yu, X.X. Xu, X.X. Sheng, E.T. Hu, W. Wei, Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Phys. Sin. 67, 118502 (2018)

    Google Scholar 

  25. C.R. Crowell, H.B. Shore, E.E. Labate, Surface-state and interface effects in Schottky barriers at n-type silicon surfaces. J. Appl. Phys. 36, 3843–3850 (1965)

    Article  ADS  Google Scholar 

  26. Y. An, A. Behnam, E. Pop, A. Ural, Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102, 013110 (2013)

    Article  ADS  Google Scholar 

  27. J.H. Wu, Z.W. Yang, C.Y. Qiu, Y.J. Zhang, Z.Q. Wu, J.L. Yang, Y.H. Lu, J.F. Li, D.X. Yang, R. Hao, E.P. Li, G.L. Yu, S.S. Lin, Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale 10, 8023–8030 (2018)

    Article  Google Scholar 

  28. V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, C.J. Choi, Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloy. Compd. 504, 146–150 (2010)

    Article  Google Scholar 

  29. J.X. Zhang, Master's thesis. School of Electronic and Information Engineering, Soochow University, China (2019)

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 61774108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Chen, J. Graphene/InP Schottky junction near-infrared photodetectors. Appl. Phys. A 126, 832 (2020). https://doi.org/10.1007/s00339-020-04009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04009-z

Keywords

Navigation