Skip to main content

Advertisement

Log in

Performance Assessment of an Air-Conditioning System Utilizing a PCM-Based Annulus Cylindrical Latent Heat Storage

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the effect of using a phase change material (PCM)-based latent heat storage (LHS) integrated with an air-conditioning system. The study has filled the knowledge gap regarding the dependence of melting rate and operational time of the AC system on PCM volume. Additionally, the study has examined the influences of important parameters such as inlet velocity and Stefan number on melting rates, outlet temperature, and COP. The results have revealed that higher inlet air velocity and Stefan number have led to shorter melting duration. Specifically, an increase in velocity from 1.6 to 2.14 m/sec has reduced the time required for complete melting by 19.16% at a fixed Ste value and D value of 2. Further increasing the velocity to 2.67 m/sec has reduced the time by 31.59%. However, increasing the volume of the PCM has resulted in a longer melting duration, with the total melting time increasing from 3.35 to 7.11 h. Better COP values have been obtained for low-velocity cases. For all cases examined, the COP of the AC system with PCM has been superior to the COP without the PCM at any given time. Increasing inlet velocity and Ste raised the outlet temperature of the HEX, while PCM volume had little impact. The results have also indicated that lower inlet velocity is suitable for longer working periods and lower AC cooling loads, whereas higher inlet velocity is appropriate for shorter working periods and higher AC cooling loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data provided in this research are accessible upon request to the corresponding author through e-mail.

Abbreviations

AC:

Air-conditioning

COP:

Coefficient of performance

D:

Outer-to-inner diameter ratio

HEX:

Heat exchanger

LHS:

Latent heat storage

MFV:

Melt fraction variation

PCM:

Phase change material

PCM-air HEX:

Phase change material-to-air heat exchanger

Ste:

Stefan number

g :

Acceleration gravity (m/s2)

A :

Area (m2)

Q :

Heat absorbed (W)

in:

Inlet

D 1 :

Inner diameter

L :

Latent heat of fusion (J/kg)

D 2 :

Outer diameter

out:

Outlet

h s :

Sensible enthalpy (J)

T :

Temperature (K)

H :

Total enthalpy (J)

u :

Velocity (m/sec)

α :

Melt fraction

μ :

Dynamic viscosity (kg/ms)

ρ :

Density (kg/m3)

References

  1. Said, M.A.; Hassan, H.: Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Appl. Energy 230, 1380–1402 (2018). https://doi.org/10.1016/j.apenergy.2018.09.048

    Article  ADS  Google Scholar 

  2. Chow, T.T.; Lin, Z.; Yang, X.Y.: Placement of condensing units of split-type air-conditioners at low-rise residences. Appl. Therm. Eng. 22(13), 1431–1444 (2002). https://doi.org/10.1016/S1359-4311(02)00068-6

    Article  Google Scholar 

  3. Ismail, M.; Zahra, W.K.; Ookawara, S.; Hassan, H.: Boosting the air conditioning unit performance using phase change material: Impact of system configuration. J. Energy Storage 56, 105864 (2022). https://doi.org/10.1016/j.est.2022.105864

    Article  Google Scholar 

  4. Beemkumar, N.; Karthikeyan, A.; Yuvarajan, D.; Lakshmi Sankar, S.: Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins. Arab. J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2455-9

    Article  Google Scholar 

  5. Hussein, A.; Abd-Elhady, M.S.; El-Sheikh, M.N.; El-Metwally, H.T.: Improving Heat Transfer Through Paraffin Wax, by Using Fins and Metallic Strips. Arab. J. Sci. Eng. 43(9), 4433–4441 (2018). https://doi.org/10.1007/s13369-017-2923-2

    Article  CAS  Google Scholar 

  6. Muzhanje, A.T.; Hassan, M.A.; Ookawara, S.; Hassan, H.: An overview of the preparation and characteristics of phase change materials with nanomaterials. J. Energy Storage 51, 104353 (2022). https://doi.org/10.1016/j.est.2022.104353

    Article  Google Scholar 

  7. Lane, G.A.; Lane, G.A.: Solar heat storage: latent heat materials, Vol. 1. CRC Press Boca Raton, FL, USA (1983)

    Google Scholar 

  8. Darzi, A.A.R.; Moosania, S.M.; Tan, F.L.; Farhadi, M.: Numerical investigation of free-cooling system using plate type PCM storage. Int. Commun. Heat Mass Transf. 48, 155–163 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.08.025

    Article  Google Scholar 

  9. Telkes, M.: Trombe wall with phase change storage material. In: Proceedings of the 2nd national passive solar conference, (1978).

  10. Yanbing, K.; Yi, J.; Yinping, Z.: Modeling and experimental study on an innovative passive cooling system - NVP system. Energy Build. 35(4), 417–425 (2003). https://doi.org/10.1016/S0378-7788(02)00141-X

    Article  Google Scholar 

  11. Arce, P.; Medrano, M.; Gil, A.; Oro, E.; Cabeza, L.F.: Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Appl. Energy 88, 2764–2774 (2011)

    Article  ADS  Google Scholar 

  12. Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K.: A review of different strategies for HVAC energy saving. Energy Convers. Manag. 77, 738–754 (2014). https://doi.org/10.1016/j.enconman.2013.10.023

    Article  Google Scholar 

  13. Ramesh, K.N.; Sharma, T.K.; Rao, G.A.P.; Murthy, K.M.: Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07007-w

    Article  Google Scholar 

  14. Waqas, A.; Kumar, S.: Utilization of latent heat storage unit for comfort ventilation of buildings in hot and dry climates. Int. J. Green Energy 8(1), 1–24 (2011). https://doi.org/10.1080/15435075.2010.529406

    Article  Google Scholar 

  15. Selvnes, H.; Allouche, Y.; Manescu, R.I.; Hafner, A.: Review on cold thermal energy storage applied to refrigeration systems using phase change materials. Therm. Sci. Eng. Progress 22, 100807 (2021). https://doi.org/10.1016/j.tsep.2020.100807

    Article  Google Scholar 

  16. Vakilaltojjar, S.M.; Saman, W.: Analysis and modelling of a phase change storage system for air conditioning applications. Appl. Therm. Eng. 21(3), 249–263 (2001). https://doi.org/10.1016/S1359-4311(00)00037-5

    Article  CAS  Google Scholar 

  17. Jaworski, M.: Thermal performance of building element containing phase change material (PCM) integrated with ventilation system - An experimental study. Appl. Therm. Eng. 70(1), 665–674 (2014). https://doi.org/10.1016/j.applthermaleng.2014.05.093

    Article  Google Scholar 

  18. Chaiyat, N.; Kiatsiriroat, T.: Energy reduction of building air-conditioner with phase change material in Thailand. Case Stud. Therm. Eng. 4, 175–186 (2014). https://doi.org/10.1016/j.csite.2014.09.006

    Article  Google Scholar 

  19. Halawa, E.; Bruno, F.; Saman, W.: Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Convers. Manag. 46(15), 2592–2604 (2005). https://doi.org/10.1016/j.enconman.2004.11.003

    Article  CAS  Google Scholar 

  20. Voller V. R.: Numerical Heat Transfer , Part B : Fundamentals : An International Journal of Computation and Methodology FAST IMPLICIT FINITE-DIFFERENCE METHOD FOR THE ANALYSIS OF PHASE CHANGE PROBLEMS,” Numer. Heat Transf., vol. 17, no. September 2012, pp. 155–169, (1990)

  21. Mosaffa, A.H.; Ferreira, C.I.; Talati, F.; Rosen, M.A.: Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers. Manag. 67, 1–7 (2013). https://doi.org/10.1016/j.enconman.2012.10.018

    Article  CAS  Google Scholar 

  22. Said, M.A.; Hassan, H.: An experimental work on the effect of using new technique of thermal energy storage of phase change material on the performance of air conditioning unit. Energy Build. 173, 353–364 (2018). https://doi.org/10.1016/j.enbuild.2018.05.041

    Article  Google Scholar 

  23. Khobragade, S.; Devanuri, J.K.: Impact of inclination on the thermal performance of shell and tube latent heat storage system under simultaneous charging and discharging: Numerical investigation. Appl. Therm. Eng. 214, 118811 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118811

    Article  Google Scholar 

  24. Chen, L.; Fan, A.: Effects of shell modifications and operational parameters on melting uniformity of a vertical multi-section shell-and-tube latent heat thermal energy storage unit. J. Energy Storage 55, 105593 (2022). https://doi.org/10.1016/j.est.2022.105593

    Article  Google Scholar 

  25. Ao, C.; Yan, S.; Hu, W.; Zhao, L.; Wu, Y.: Heat transfer analysis of a PCM in shell-and-tube thermal energy storage unit with different V-shaped fin structures. Appl. Therm. Eng. 216, 119079 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119079

    Article  Google Scholar 

  26. Kumar, A.; Verma, P.; Varshney, L.: An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system. J. Energy Storage 45, 103734 (2022). https://doi.org/10.1016/j.est.2021.103734

    Article  Google Scholar 

  27. Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Multi-objective optimization of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage: experiments and numerical modeling. Appl. Therm. Eng. 215, 119047 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119047

    Article  Google Scholar 

  28. Ismail, M.; Zahra, W.K.; Ookawara, S.; Hassan, H.: Enhancing the air conditioning unit performance via energy storage of different inorganic phase change materials with hybrid nanoparticles. Jom 75(3), 739–753 (2023). https://doi.org/10.1007/s11837-022-05629-x

    Article  CAS  ADS  Google Scholar 

  29. Anisur, M.R.; Kibria, M.A.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.: Cooling of air using heptadecane phase change material in shell and tube arrangement: Analytical and experimental study. Energy Build. 85, 98–106 (2014). https://doi.org/10.1016/j.enbuild.2014.09.015

    Article  Google Scholar 

  30. Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T.: Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy Build. 60, 270–279 (2013). https://doi.org/10.1016/j.enbuild.2013.01.031

    Article  Google Scholar 

  31. Vyshak, N.R.; Jilani, G.: Numerical analysis of latent heat thermal energy storage system. Energy Convers. Manag. 48(7), 2161–2168 (2007). https://doi.org/10.1016/j.enconman.2006.12.013

    Article  CAS  Google Scholar 

  32. https://www.rubitherm.eu/, “n.d.”

  33. Versteeg, H. K., & Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Pearson education. (2007)

  34. Hai, T.; Sajadi, S.M.; Zain, J.M.; El-Shafay, A.S.; Sharifpur, M.: The effect of using tubes filled with phase change materials in the air conditioning system of a residential building. J. Build. Eng. 49, 104079 (2022). https://doi.org/10.1016/j.jobe.2022.104079

    Article  Google Scholar 

  35. Barreira, E.M.; Negrão, C.O.R.; Hermes, C.J.L.: Thermoeconomic analysis and optimization of residential split-type air conditioners. Appl. Therm. Eng. 50(1), 629–636 (2013). https://doi.org/10.1016/j.applthermaleng.2012.06.006

    Article  CAS  Google Scholar 

  36. Dukhan, W.A.; Dhaidan, N.S.; Al-Hattab, T.A.; Al-Mousawi, F.N.: Phase-change of paraffin inside heat exchangers: an experimental study. Int. J. Environ. Sci. Technol. 19(4), 3155–3164 (2022). https://doi.org/10.1007/s13762-021-03367-2

    Article  CAS  Google Scholar 

  37. Nada, S.A.; Said, M.A.: Performance and energy consumptions of split type air conditioning units for different arrangements of outdoor units in confined building shafts. Appl. Therm. Eng. 123, 874–890 (2017). https://doi.org/10.1016/j.applthermaleng.2017.05.104

    Article  Google Scholar 

  38. Anisur, M.R.; Kibria, M.A.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.: Analysis of a thermal energy storage system for air cooling-heating application through cylindrical tube. Energy Convers. Manag. 76, 732–737 (2013). https://doi.org/10.1016/j.enconman.2013.08.031

    Article  Google Scholar 

Download references

Funding

The authors would like to express their gratitude to the Ministry of Education, Government of India, for providing financial support in the form of a PhD fellowship during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Chandra Singh.

Ethics declarations

Conflict of interest

The authors state that they have no competing interests in the publication of this research. There was no financial assistance for this research, and no personal advantages were acquired from the findings.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.C., Halder, P. Performance Assessment of an Air-Conditioning System Utilizing a PCM-Based Annulus Cylindrical Latent Heat Storage. Arab J Sci Eng 49, 1759–1770 (2024). https://doi.org/10.1007/s13369-023-08009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08009-y

Keywords

Navigation