Skip to main content

Advertisement

Log in

Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heatsinks have a prime role in the thermal management of energy systems and electronic devices. Miniaturization and the high power requirement of modern electronic equipment make them more compact and more heat-generating. For the efficient operation of modern electronic equipment, efficient thermal management system is required. Microchannel heatsinks (MCHS) are the best choice for efficient thermal management of electronic devices because of their high compactness and large heat-dissipating capacity. The attention of most of the researchers is on the improvement of the performance of the MCHS. In the present work, the augmentation of the performance of MCHS by incorporating the phase change material (PCM) was analysed. Six novel designs of PCM-based hybrid MCHS are modelled using ANSYS FLUENT. The computational model implemented for the present work was validated with both experimental and numerical works in the literature, and a good agreement was observed. The performance of six models of PCM-based MCHSs is analysed and compared with the heatsink without PCM. The heatsink model with the best thermal performance is presented. The variation of thermal resistance, liquid fraction, and temperature uniformity coefficient (TUC) with Reynolds number are analysed. A maximum of 15.26% lower TUC and 7.3% lower thermal resistance was found in hybrid MCHS with PCM compared to the MCHS without PCM. The influence of the liquid fraction and position of the PCM on the performance of MCHS were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MC:

Microchannel

MCHS:

Microchannel heat sink

MEPCM:

Microencapsulated PCM

Nu:

Nusselt number

PCM:

Phase change material

Re:

Reynolds number

A b :

Area of the base of the MCHS (m2)

H :

Height of the heatsink (m)

H C :

Height of the channel (m)

H P :

Height of the PCM layer (m)

L :

Length of the heatsink (m)

p :

Pressure (Pa)

q :

Heat flux applied on base (W/m2)

R T :

Total thermal resistance (K/W)

t 1 :

Heatsink top rib thickness (m)

t 2 :

Heatsink bottom rib thickness (m)

\({\overline{T} }_{\mathrm{b}}\) :

Average temperature of the base (K)

T f :

Temperature of the fluid (K)

T in :

Inlet temperature of the fluid (K)

v in :

Inlet velocity (m/s2)

W :

Width of the heatsink (m)

W c :

Width of the channel (m)

W p :

Width of the PCM layer (m)

W t :

Gap between the microchannels (m)

x, y, z :

Cartesian coordinates (m)

α :

Thermal diffusivity (m2/s)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg/m3)

b:

Base of the channel

C:

Channel

f:

Fluid

in:

Inlet

T:

Total

References

  1. Tuckerman, D.B.; Pease, R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett 2, 126–129 (1981). https://doi.org/10.1109/EDL.1981.25367

    Article  Google Scholar 

  2. Ramesh, K.N.; Sharma, T.K.; Rao, G.A.P.: Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review. Arch. Comput. Methods Eng. (2020). https://doi.org/10.1007/s11831-020-09495-1

    Article  Google Scholar 

  3. Qu, W.; Mudawar, I.: Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int. J. Heat Mass Transf. 45, 3973–3985 (2002). https://doi.org/10.1016/S0017-9310(02)00101-1

    Article  MATH  Google Scholar 

  4. Qasem, N.A.A.; Zubair, S.M.: Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations. Energy Convers. Manag. 173, 555–601 (2018). https://doi.org/10.1016/j.enconman.2018.06.104

    Article  Google Scholar 

  5. Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019

    Article  Google Scholar 

  6. Ji, Y.; Yuan, K.; Chung, J.N.: Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. Int. J. Heat Mass Transf. 49, 1329–1339 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.011

    Article  MATH  Google Scholar 

  7. Li, J.; Kleinstreuer, C.: Thermal performance of nanofluid flow in microchannels. Int. J. Heat Fluid Flow. 29, 1221–1232 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.01.005

    Article  Google Scholar 

  8. Kuppusamy, N.R.; Mohammed, H.A.; Lim, C.W.: Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochim. Acta. 573, 39–56 (2013). https://doi.org/10.1016/j.tca.2013.09.011

    Article  Google Scholar 

  9. Kuppusamy, N.R.; Mohammed, H.A.; Lim, C.W.: Thermal and hydraulic characteristics of nanofluid in a triangular grooved microchannel heat sink (TGMCHS). Appl. Math. Comput. 246, 168–183 (2014). https://doi.org/10.1016/j.amc.2014.07.087

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Y.T.; Tsai, K.T.; Wang, Y.H.; Lin, S.H.: Numerical study of microchannel heat sink performance using nanofluids. Int. Commun. Heat Mass Transf. 57, 27–35 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.07.006

    Article  Google Scholar 

  11. Ghale, Z.Y.; Haghshenasfard, M.; Esfahany, M.N.: Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. Int. Commun. Heat Mass Transf. 68, 122–129 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.08.012

    Article  Google Scholar 

  12. Rostami, J.; Abbassi, A.: Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method. Adv. Powder Technol. (2016). https://doi.org/10.1016/j.apt.2015.10.003

    Article  Google Scholar 

  13. Mozafari, M.; Lee, A.; Mohammadpour, J.: Thermal management of single and multiple PCMs based heat sinks for electronics cooling. Therm. Sci. Eng. Prog. 23, 100919 (2021). https://doi.org/10.1016/J.TSEP.2021.100919

    Article  Google Scholar 

  14. Mahdi, J.M.; Mohammed, H.I.; Talebizadehsardari, P.: A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Sol. Energy. 222, 160–174 (2021). https://doi.org/10.1016/J.SOLENER.2021.04.044

    Article  Google Scholar 

  15. Alehosseini, E.; Jafari, S.M.: Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Adv. Colloid Interface Sci. 283, 102226 (2020). https://doi.org/10.1016/J.CIS.2020.102226

    Article  Google Scholar 

  16. Deng, X.; Wang, S.; Wang, J.; Zhang, T.: Analytical modeling of microchannel heat sinks using microencapsulated phase change material slurry for chip cooling. Procedia Eng. 205, 2704–2711 (2017)

    Article  Google Scholar 

  17. Ho, C.J.; Chang, P.C.; Yan, W.M.; Amani, P.: Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions. Int. J. Therm. Sci. 130, 333–346 (2018). https://doi.org/10.1016/J.IJTHERMALSCI.2018.04.035

    Article  Google Scholar 

  18. Yan, W.M.; Ho, C.J.; Tseng, Y.T.; Qin, C.; Rashidi, S.: Numerical study on convective heat transfer of nanofluid in a minichannel heat sink with micro-encapsulated PCM-cooled ceiling. Int. J. Heat Mass Transf. 153, 119589 (2020). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119589

    Article  Google Scholar 

  19. Rajabifar, B.: Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. Int. J. Heat Mass Transf. 88, 627–635 (2015). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.05.007

    Article  Google Scholar 

  20. Arshad, A.; Jabbal, M.; Sardari, P.T.; Bashir, M.A.; Faraji, H.; Yan, Y.: Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Therm. Sci. Eng. Prog. 18, 100520 (2020). https://doi.org/10.1016/J.TSEP.2020.100520

    Article  Google Scholar 

  21. Khot, S.; Sane, N.; Gawali, B.: Experimental investigation of phase change phenomena of paraffin wax inside a capsule. Int J. Eng. TrendsTechnol. 2, 67–71 (2011)

    Google Scholar 

  22. Yadav, A.; Soni, S.: Simulation of melting process of a phase change material (PCM) using ANSYS (Fluent). Int. Res. J. Eng. Technol. 4(5), 3289–3294 (2017)

    Google Scholar 

  23. Al-Rashed, A.A.A.A.; Shahsavar, A.; Rasooli, O.; Moghimi, M.A.; Karimipour, A.; Tran, M.D.: Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. Int. Commun. Heat Mass Transf. 104, 118–126 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.03.007

    Article  Google Scholar 

  24. Wong, K.C.; Muezzin, F.N.A.: Heat transfer of a parallel flow two-layered microchannel heat sink. Int. Commun. Heat Mass Transf. (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.09.004

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Karthikeya Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, K.N., Sharma, T.K., Rao, G.A.P. et al. Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application. Arab J Sci Eng 48, 2779–2793 (2023). https://doi.org/10.1007/s13369-022-07007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07007-w

Keywords

Navigation