Skip to main content
Log in

The Impacts of Iron Oxide Nanoparticles on Membrane Properties for Water and Wastewater Applications: a Review

  • Review Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The sustainability of clean water supply remains as one of the grand crises faced by today’s world. The rapid expansion of membrane technology has opened up the opportunities for its applications in the sector of water and wastewater treatment. However, the commercial polymeric membranes are suffered from low degree of hydrophilicity and prone to different types of surface fouling. The incorporation of inorganic nanomaterials as nanofillers within polymeric matrix to produce nanocomposite membranes has received enormous attention because of its ability to resolve underlying issues encountered by conventional polymeric membranes. Among various nanoparticles, iron oxide (Fe3O4) nanoparticles have sparked great interest in the fabrication of nanocomposite membranes owing to its intrinsic properties that could improve not only the membrane surface hydrophilicity and antifouling properties but also its removal rates against pollutants via sieving and/or adsorption mechanisms. This review aims to provide insights on the recent advances of Fe3O4-modified microporous membranes for both water and wastewater treatment. Novel strategies such as surface functionalization and nanohybridization of Fe3O4 nanoparticles and its impacts on membrane physicochemical properties and separation performances have been explored and critically reviewed. Finally, the technical challenges in utilizing Fe3O4-modified microporous membranes for potential applications in real operation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, X.; Su, Y.; Shen, F.; Yinhua, W.: Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: effect of copolymer composition and PEG chain length. Fuel Energy Abstr. 384, 44–51 (2011). https://doi.org/10.1016/j.memsci.2011.09.002m

    Article  Google Scholar 

  2. Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N.: Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013). https://doi.org/10.1016/j.desal.2010.11.033

    Article  Google Scholar 

  3. Goh, P.S.; Ng, B.C.; Lau, W.J.; Ismail, A.F.: Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep. Purif. Rev. 44(3), 216–249 (2015). https://doi.org/10.1080/15422119.2014.926274

    Article  Google Scholar 

  4. Baker, R.W.: Ultrafiltration. In: Membrane Technology and Applications. pp. 237–274. Wiley, West Sussex, England (2004). https://doi.org/10.1002/0470020393

  5. Al Aani, S.; Mustafa, T.N.; Hilal, N.: Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade. J. Water Process. Eng. 35, 101241 (2020). https://doi.org/10.1016/j.jwpe.2020.101241

    Article  Google Scholar 

  6. Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22(1), 46–56 (2003). https://doi.org/10.1002/ep.670220116

    Article  Google Scholar 

  7. Zhao, X.; Ma, J.; Wang, Z.; Wen, G.; Jiang, J.; Shi, F.; Sheng, L.: Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane. Desalination 303, 29–38 (2012). https://doi.org/10.1016/j.desal.2012.07.009

    Article  Google Scholar 

  8. Akar, N.; Asar, B.; Dizge, N.; Koyuncu, I.: Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J. Membr. Sci. 437, 216–226 (2013). https://doi.org/10.1016/j.memsci.2013.02.012

    Article  Google Scholar 

  9. Yu, S.; Zuo, X.; Bao, R.; Xu, X.; Wang, J.; Xu, J.: Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 50(2), 553–559 (2009). https://doi.org/10.1016/j.polymer.2008.11.012

    Article  Google Scholar 

  10. Souza, V.C.; Quadri, M.G.N.: Organic-inorganic hybrid membranes in separation processes: a 10-year review. Braz. J. Chem. Eng. 30, 683–700 (2013)

    Article  Google Scholar 

  11. Cao, X.; Ma, J.; Shi, X.; Ren, Z.: Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253(4), 2003–2010 (2006). https://doi.org/10.1016/j.apsusc.2006.03.090

    Article  Google Scholar 

  12. Kayvani Fard, A.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M.: Inorganic membranes: preparation and application for water treatment and desalination. Materials 11(1), 74 (2018)

    Article  Google Scholar 

  13. Agboola, O.; Fayomi, O.S.I.; Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; Sanni, S.E.; Okoro, E.E.; Moropeng, L.; Sadiku, R.; Kupolati, K.W.; Oni, B.A.: A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation. Membranes 11(2), 139 (2021)

    Article  Google Scholar 

  14. Darabi, R.R.; Peyravi, M.; Jahanshahi, M.; Qhoreyshi Amiri, A.A.: Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate. Korean J. Chem. Eng. 34(8), 2311–2324 (2017). https://doi.org/10.1007/s11814-017-0086-1

    Article  Google Scholar 

  15. Huang, Z.Q.; Chen, Z.Y.; Guo, X.P.; Zhang, Z.; Guo, C.L.: Structures and separation properties of PAN-Fe3O4 ultrafiltration membranes prepared under an orthogonal magnetic field. Ind. Eng. Chem. Res. 45(23), 7905–7912 (2006). https://doi.org/10.1021/ie0603013

    Article  Google Scholar 

  16. Moatmed, S.M.; Khedr, M.H.; El-dek, S.I.; Kim, H.-Y.; El-Deen, A.G.: Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. J. Environ. Chem. Eng. 7(6), 103508 (2019). https://doi.org/10.1016/j.jece.2019.103508

    Article  Google Scholar 

  17. Abegunde, S.M.; Idowu, K.S.; Sulaimon, A.O.: Plant-mediated iron nanoparticles and their applications as adsorbents for water treatment—a review. J. Chem. Rev. 2(2), 103–113 (2020). https://doi.org/10.33945/sami/jcr.2020.2.3

    Article  Google Scholar 

  18. Razmjou, A.; Mansouri, J.; Chen, V.: The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci. 378(1), 73–84 (2011). https://doi.org/10.1016/j.memsci.2010.10.019

    Article  Google Scholar 

  19. Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; Van der Bruggen, B.: Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES–TiO2 membranes. J. Colloid Interface Sci. 363(2), 540–550 (2011). https://doi.org/10.1016/j.jcis.2011.07.089

    Article  Google Scholar 

  20. Bae, T.H.; Tak, T.M.: Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 249(1), 1–8 (2005). https://doi.org/10.1016/j.memsci.2004.09.008

    Article  Google Scholar 

  21. Li, X.; Li, J.; Van der Bruggen, B.; Sun, X.; Shen, J.; Han, W.; Wang, L.: Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol–gel formed ZnO nanoparticles. RSC. Adv. 5(63), 50711–50719 (2015). https://doi.org/10.1039/C5RA05783C

    Article  Google Scholar 

  22. Zhao, S.; Yan, W.; Shi, M.; Wang, Z.; Wang, J.; Wang, S.: Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 478, 105–116 (2015). https://doi.org/10.1016/j.memsci.2014.12.050

    Article  Google Scholar 

  23. Hong, J.; He, Y.: Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1), 67–75 (2014). https://doi.org/10.1016/j.desal.2013.10.026

    Article  Google Scholar 

  24. Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Hadibarata, T.; Yusop, Z.: Removal of bisphenol A by adsorption mechanism using PES–SiO2 composite membranes. Environ. Technol. 37(15), 1959–1969 (2016). https://doi.org/10.1080/09593330.2015.1137359

    Article  Google Scholar 

  25. Shen, J.N.; Ruan, H.M.; Wu, L.G.; Gao, C.J.: Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 168(3), 1272–1278 (2011). https://doi.org/10.1016/j.cej.2011.02.039

    Article  Google Scholar 

  26. Huang, J.; Zhang, K.S.; Wang, K.; Xie, Z.L.; Ladewig, B.; Wang, H.T.: Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 423–424, 362–370 (2012). https://doi.org/10.1016/j.memsci.2012.08.029

    Article  Google Scholar 

  27. Alam, J.; Dass, L.A.; Ghasemi, M.; Alhoshan, M.: Synthesis and optimization of PES-Fe3O4 mixed matrix nanocomposite membrane: application studies in water purification. Polym. Compos. 34(11), 1870–1877 (2013). https://doi.org/10.1002/pc.22593

    Article  Google Scholar 

  28. Al-Husaini, I.S.; Yusoff, A.R.M.; Lau, W.J.; Ismail, A.F.; Al-Abri, M.Z.; Wirzal, M.D.H.: Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chem. Eng. Res. Des. 148, 142–154 (2019). https://doi.org/10.1016/j.cherd.2019.06.006

    Article  Google Scholar 

  29. Jiang, Z.; Tijing, L.D.; Amarjargal, A.; Park, C.H.; An, K.J.; Shon, H.K.; Kim, C.S.: Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning. Compos. B Eng. 77, 311–318 (2015). https://doi.org/10.1016/j.compositesb.2015.03.067

    Article  Google Scholar 

  30. Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Tech. Adv. Mater. 16(2), 023501 (2015). https://doi.org/10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  31. Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X.: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel) 8(10), 810 (2018). https://doi.org/10.3390/nano8100810

    Article  Google Scholar 

  32. Noqta, O.A.; Aziz, A.A.; Usman, I.A.; Bououdina, M.: Recent advances in iron oxide nanoparticles (IONPs): synthesis and surface modification for biomedical applications. J. Supercond. Nov. Magn. 32(4), 779–795 (2019). https://doi.org/10.1007/s10948-018-4939-6

    Article  Google Scholar 

  33. Subramaniam, M.N.; Goh, P.S.; Tan, Y.H.; Chiong, S.J.; Lau, W.J.; Ng, B.C.; Ismail, A.F.; Chuah, J.Y.; Lai, S.O.: Antifouling improvement of polyethersulfone membrane incorporated with negatively charged zinc–iron oxide for AT-POME colour removal. Arab. J. Sci. Eng. 44(6), 5571–5580 (2019). https://doi.org/10.1007/s13369-019-03858-y

    Article  Google Scholar 

  34. Tan, Y.H.; Goh, P.S.; Ismail, A.F.; Ng, B.C.; Lai, G.S.: Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles. Chem. Eng. J. 308, 359–369 (2017). https://doi.org/10.1016/j.cej.2016.09.092

    Article  Google Scholar 

  35. Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H.; Beygzadeh, M.: Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349, 145–154 (2014). https://doi.org/10.1016/j.desal.2014.07.007

    Article  Google Scholar 

  36. Koulivand, H.; Shahbazi, A.; Vatanpour, V.: Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chem. Eng. Res. Des. 145, 64–75 (2019). https://doi.org/10.1016/j.cherd.2019.03.003

    Article  Google Scholar 

  37. Rahimi, Z.; Zinatizadeh, A.A.; Zinadini, S.: Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe3O4/PVDF ultrafiltration membrane. J. Ind. Eng. Chem. 38, 103–112 (2016). https://doi.org/10.1016/j.jiec.2016.04.011

    Article  Google Scholar 

  38. Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.: Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. J. Membr. Sci. 582, 402–413 (2019). https://doi.org/10.1016/j.memsci.2019.04.020

    Article  Google Scholar 

  39. Li, L.; Wang, F.; Lv, Y.; Liu, J.; Zhang, D.; Shao, Z.: Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Appl. Clay Sci. 161, 225–234 (2018). https://doi.org/10.1016/j.clay.2018.04.002

    Article  Google Scholar 

  40. Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M.: Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem. Eng. J. 337, 169–182 (2018). https://doi.org/10.1016/j.cej.2017.12.075

    Article  Google Scholar 

  41. Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B.: Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci. 415–416, 250–259 (2012). https://doi.org/10.1016/j.memsci.2012.05.007

    Article  Google Scholar 

  42. Ma, J.; Ping, D.; Dong, X.: Recent developments of graphene oxide-based membranes: a review. Membranes 7(3), 52 (2017). https://doi.org/10.3390/membranes7030052

    Article  Google Scholar 

  43. Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M.: TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016). https://doi.org/10.1016/j.cej.2015.06.124

    Article  Google Scholar 

  44. Abdullah, N.; Yusof, N.; Ismail, A.F.; Lau, W.J.: Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination 500, 114867 (2021). https://doi.org/10.1016/j.desal.2020.114867

    Article  Google Scholar 

  45. Ihsanullah: Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep. Purif. Technol. 209, 307–337 (2019). https://doi.org/10.1016/j.seppur.2018.07.043

  46. Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J.: Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem. Eng. J. 391, 123475 (2019). https://doi.org/10.1016/j.cej.2019.123475

    Article  Google Scholar 

  47. Teja, A.; Koh, P.Y.: Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009). https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  Google Scholar 

  48. Dar, M.I.; Shivashankar, S.A.: Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4(8), 4105–4113 (2014). https://doi.org/10.1039/C3RA45457F

    Article  Google Scholar 

  49. Ghazanfari, M.R.; Kashefi, M.; Shams, S.F.; Jaafari, M.R.: Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. (2016). https://doi.org/10.1155/2016/7840161

    Article  Google Scholar 

  50. Can, M.M.; Coşkun, M.; Fırat, T.: A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. J. Alloy. Compd. 542, 241–247 (2012). https://doi.org/10.1016/j.jallcom.2012.07.091

    Article  Google Scholar 

  51. Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y.: Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater. 19(1), 33–60 (2007). https://doi.org/10.1002/adma.200600674

    Article  Google Scholar 

  52. Petcharoen, K.; Sirivat, A.: Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177(5), 421–427 (2012). https://doi.org/10.1016/j.mseb.2012.01.003

    Article  Google Scholar 

  53. Huang, Y.; Xiao, C.F.; Huang, Q.L.; Liu, H.L.; Hao, J.Q.; Song, L.: Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J. Membr. Sci. 548, 184–193 (2018). https://doi.org/10.1016/j.memsci.2017.11.027

    Article  Google Scholar 

  54. Sarno, M.; Ponticorvo, E.; Cirillo, C.: High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. J. Phys. Chem. Solid 99, 138–147 (2016). https://doi.org/10.1016/j.jpcs.2016.08.019

    Article  Google Scholar 

  55. Ma, J.H.; Wang, L.L.; Wu, Y.L.; Dong, X.S.; Ma, Q.L.; Qiao, C.; Zhang, Q.F.; Zhang, J.L.: Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater. Trans. 55(12), 1900–1902 (2014). https://doi.org/10.2320/matertrans.M2014184

    Article  Google Scholar 

  56. Wang, H.; Pu, X.; Zhou, Y.; Chen, X.; Liao, X.; Huang, Z.; Ying, G.: Synthesis of macroporous magnetic Fe3O4 microparticles via a novel organic matter assisted open-cell hollow sphere assembly method. Materials 11(9), 1508 (2018). https://doi.org/10.3390/ma11091508

    Article  Google Scholar 

  57. Blaney, L.: Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Rev. 15, 33–81 (2007)

    Google Scholar 

  58. Duriagina, Z.A.; Tepla, T.L.; Kulyk, V.V.: Evaluation of differences between Fe3O4 micro- and nanoparticles properties. Acta Phys. Pol. A 133, 869 (2018). https://doi.org/10.12693/APhysPolA.133.869

    Article  Google Scholar 

  59. Liu, X.; Chen, Y.; Deng, Z.; Yang, Y.: High-performance nanofiltration membrane for dyes removal: blending Fe3O4-HNTs nanocomposites into poly(vinylidene fluoride) matrix. J. Dispers. Sci. Technol. (2019). https://doi.org/10.1080/01932691.2019.1662308

    Article  Google Scholar 

  60. Akın Sahbaz, D.; Yakar, A.; Gündüz, U.: Magnetic Fe3O4-chitosan micro- and nanoparticles for wastewater treatment. Part. Sci. Technol. 37(6), 732–740 (2019). https://doi.org/10.1080/02726351.2018.1438544

    Article  Google Scholar 

  61. Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Zinadini, S.; Alizadeh, A.; Heydari, R.; Beygzadeh, M.; Ghouzivand, S.: Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J. 263, 101–112 (2015). https://doi.org/10.1016/j.cej.2014.10.103

    Article  Google Scholar 

  62. Zainol Abidin, M.N.; Goh, P.S.; Ismail, A.F.; Said, N.; Othman, M.H.D.; Hasbullah, H.; Abdullah, M.S.; Ng, B.C.; Sheikh Abdul Kadir, S.H.; Kamal, F.: Polysulfone/iron oxide nanoparticles Ultraflitration membrane for adsorptive removal of phosphate from aqueous solution. J. Membr. Sci. Res. 5(1), 20–24 (2019). https://doi.org/10.22079/jmsr.2018.87665.1195

    Article  Google Scholar 

  63. Said, N.; Hasbullah, H.; Ismail, A.F.; Othman, M.H.D.; Goh, P.S.; Zainol Abidin, M.N.; Sheikh Abdul Kadir, S.H.; Kamal, F.; Abdullah, M.S.; Ng, B.C.: Enhanced hydrophilic polysulfone hollow fiber membranes with addition of iron oxide nanoparticles. Polym. Int. 66(11), 1424–1429 (2017). https://doi.org/10.1002/pi.5401

    Article  Google Scholar 

  64. Frey, N.A.; Peng, S.; Cheng, K.; Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38(9), 2532–2542 (2009). https://doi.org/10.1039/B815548H

    Article  Google Scholar 

  65. Jian, P.; Yahui, H.; Yang, W.; Linlin, L.: Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J. Membr. Sci. 284(1), 9–16 (2006). https://doi.org/10.1016/j.memsci.2006.07.052

    Article  Google Scholar 

  66. Koseoglu, Y.; Kavas, H.: Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584–590 (2008). https://doi.org/10.1166/jnn.2008.B012

    Article  Google Scholar 

  67. Chang, Y.C.; Chen, D.H.: Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 283(2), 446–451 (2005). https://doi.org/10.1016/j.jcis.2004.09.010

    Article  Google Scholar 

  68. Zhang, J.; Lin, S.; Han, M.; Su, Q.; Xia, L.; Hui, Z.: Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr(VI) and Cu(II) in mixed solution. Water 12(2), 446 (2020)

    Article  Google Scholar 

  69. Xiao, D.L.; Li, H.; He, H.; Lin, R.; Zuo, P.L.: Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu(II) in water. New Carbon Mater. 29(1), 15–25 (2014). https://doi.org/10.1016/S1872-5805(14)60122-0

    Article  Google Scholar 

  70. Saraswathi, A.S.A.; Nagendran, A.; Rana, D.: Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. J. Mater. Chem. A 7(15), 8723–8745 (2019). https://doi.org/10.1039/C8TA11460A

    Article  Google Scholar 

  71. Kim, J.; Van der Bruggen, B.: The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158(7), 2335–2349 (2010). https://doi.org/10.1016/j.envpol.2010.03.024

    Article  Google Scholar 

  72. Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.A.; Razzaq, W.: A comprehensive review on polymeric nanocomposite membranes for water treatment. J. Membr. Sci. Technol. (2018). https://doi.org/10.4172/2155-9589.1000179

    Article  Google Scholar 

  73. Chai, P.V.; Mahmoudi, E.; Teow, Y.H.; Mohammad, A.W.: Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. J. Water Process. Eng. 15, 83–88 (2017). https://doi.org/10.1016/j.jwpe.2016.06.001

    Article  Google Scholar 

  74. Ma, D.L.: Chapter 1 - Hybrid nanoparticles: an introduction. In: Mohapatra, S., Nguyen, T.A., Nguyen-Tri, P. (eds.) Noble metal-metal oxide hybrid nanoparticles. pp. 3–6. Woodhead Publishing, (2019)

  75. Rambabu, K.; Velu, S.: Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies. E-Polymers 15, 151–159 (2015). https://doi.org/10.1515/epoly-2014-0214

    Article  Google Scholar 

  76. Rambabu, K.; Velu, S.: Iron nanoparticles blended polyethersulfone ultrafiltration membranes for enhanced metal ion removal in wastewater treatment. Int. J. ChemTech Res. 6, 4468–4470 (2014)

    Google Scholar 

  77. Bagheripour, E.; Moghadassi, A.R.; Parvizian, F.; Hosseini, S.M.; Van der Bruggen, B.: Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chem. Eng. Res. Des. 144, 418–428 (2019). https://doi.org/10.1016/j.cherd.2019.02.028

    Article  Google Scholar 

  78. Gholami, A.; Moghadassi, A.R.; Hosseini, S.M.; Shabani, S.; Gholami, F.: Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J. Ind. Eng. Chem. 20(4), 1517–1522 (2014). https://doi.org/10.1016/j.jiec.2013.07.041

    Article  Google Scholar 

  79. Huang, Z.Q.; Chen, Y.S.; Chen, Z.W.; Nie, L.H.; Zhang, Z.; Xu, H.T.; Zhou, K.M.: Effect of the mass ratio of Fe3O4/PAA on separation properties and the extractive amount of Fe3O4 during the formation of Fe3O4-PES ultrafiltration membranes. J. Appl. Polym. Sci. 129(6), 3558–3565 (2013). https://doi.org/10.1002/app.39128

    Article  Google Scholar 

  80. Ansari, S.; Bagheripour, E.; Moghadassi, A.; Hosseini, S.M.: Fabrication of mixed matrix poly(phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination. J. Polym. Eng. (2016). https://doi.org/10.1515/polyeng-2015-0392

    Article  Google Scholar 

  81. Mehrnia, M.R.; Homayoonfal, M.: Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor. J. Membr. Sci. 520, 881–894 (2016). https://doi.org/10.1016/j.memsci.2016.08.046

    Article  Google Scholar 

  82. Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Khadivi, M.A.; Astinchap, B.; Moradian, R.: Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: study of magnetic field induced casting. Sep. Purif. Technol. 109, 111–121 (2013). https://doi.org/10.1016/j.seppur.2013.02.035

    Article  Google Scholar 

  83. Rahimi, Z.; Zinatizadeh, A.A.; Zinadini, S.: Membrane bioreactors troubleshooting through the preparation of a high antifouling PVDF ultrafiltration mixed-matrix membrane blended with O-carboxymethyl chitosan-Fe3O4 nanoparticles. Environ. Technol. 40(26), 3523–3533 (2019). https://doi.org/10.1080/09593330.2018.1480665

    Article  Google Scholar 

  84. Bagheripour, E.; Moghadassi, A.R.; Hosseini, S.M.: Incorporated polyacrylic acid-co-Fe3O4 nanoparticles mixed matrix polyethersulfone based nanofiltration membrane in desalination process. Int. J. Eng. Trans. C Asp. 30, 821–829 (2017)

    Google Scholar 

  85. Silva Valentim, A.C.; da Silva, E.O.; da Silva, P.S.R.C.; Garcia, D.S.; Bruno Tavares, M.I.: Synergistic effect between hybrid nanoparticles of TiO2 and Nb2O5 in the nanostructured materials based on eva matrix. Polym. Test. 70, 111–116 (2018). https://doi.org/10.1016/j.polymertesting.2018.06.033

    Article  Google Scholar 

  86. Wu, H.; Tang, B.; Wu, P.: Development of novel SiOR GO nanohybrid/polysulfone membrane with enhanced performance. J. Membr. Sci. 451, 94–102 (2014)

    Article  Google Scholar 

  87. Xu, Z.; Wu, T.; Shi, J.; Wang, W.; Teng, K.; Qian, X.; Shan, M.; Deng, H.; Tian, X.; Li, C.; Li, F.: Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes. ACS Appl. Mater. Interfaces 8(28), 18418–18429 (2016). https://doi.org/10.1021/acsami.6b04083

    Article  Google Scholar 

  88. Li, S.Z.; Gong, Y.B.; Yang, Y.C.; He, C.; Hu, L.L.; Zhu, L.F.; Sun, L.P.; Shu, D.: Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem. Eng. J. 260, 231–239 (2015). https://doi.org/10.1016/j.cej.2014.09.032

    Article  Google Scholar 

  89. Wang, C.; Wu, H.; Qu, F.; Liang, H.; Niu, X.; Li, G.: Preparation and properties of polyvinyl chloride ultrafiltration membranes blended with functionalized multi-walled carbon nanotubes and MWCNTs/Fe3O4 hybrids. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43417

    Article  Google Scholar 

  90. Noormohamadi, A.; Homayoonfal, M.; Mehrnia, M.R.; Davar, F.: Employing magnetism of Fe3O4 and hydrophilicity of ZrO2 to mitigate biofouling in magnetic MBR by Fe3O4-coated ZrO2/PAN nanocomposite membrane. Environ. Technol. 41(20), 2683–2704 (2020). https://doi.org/10.1080/09593330.2019.1579870

    Article  Google Scholar 

  91. Chai, P.V.; Mahmoudi, E.; Mohammad, A.W.; Choy, P.Y.: Iron oxide decorated graphene oxide embedded polysulfone mixed-matrix membrane: Comparison of different types mixed-matrix membranes on antifouling and performance. IOP Conf. Ser. Earth Environ. Sci. 463, 012174 (2020). https://doi.org/10.1088/1755-1315/463/1/012174

    Article  Google Scholar 

  92. Madaeni, S.S.; Heidary, F.; Salehi, E.: Co-adsorption/filtration of heavy metal ions from water using regenerated cellulose UF membranes modified with DETA ligand. Sep. Sci. Technol. 48(9), 1308–1314 (2013). https://doi.org/10.1080/01496395.2012.735741

    Article  Google Scholar 

  93. Rowley, J.; Abu-Zahra, N.H.: Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 7(1), 102875 (2019). https://doi.org/10.1016/j.jece.2018.102875

    Article  Google Scholar 

  94. Moradihamedani, P.; Kalantari, K.; Abdullah, A.H.; Morad, N.A.: High efficient removal of lead(II) and nickel(II) from aqueous solution by novel polysulfone/Fe3O4–talc nanocomposite mixed matrix membrane. Desalin. Water Treat. 57(59), 28900–28909 (2016). https://doi.org/10.1080/19443994.2016.1193449

    Article  Google Scholar 

  95. Modi, A.; Bellare, J.: Efficient removal of 2,4-dichlorophenol from contaminated water and alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite hollow fiber membranes. J. Water Process. Eng. 33, 101113 (2020). https://doi.org/10.1016/j.jwpe.2019.101113

    Article  Google Scholar 

  96. Chen, F.; Dong, S.; Wang, Z.; Xu, J.; Xu, R.; Wang, J.: Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid. Int. J. Hydrog. Energy 45(12), 7444–7454 (2020). https://doi.org/10.1016/j.ijhydene.2019.04.050

    Article  Google Scholar 

  97. Sri Abirami Saraswathi, M.S.; Nagendran, A.; Rana, D.: Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. J. Mater. Chem. A 7(15), 8723–8745 (2019). https://doi.org/10.1039/C8TA11460A

    Article  Google Scholar 

  98. Liu, J.; Li, Y.; Wang, X.; Zhang, Q.; Yang, J.: Preparation and properties of nano-composite films based on polyethersulfone and surface-modified SiO2. J. Macromol. Sci. Part B 50(12), 2356–2365 (2011). https://doi.org/10.1080/00222348.2011.562825

    Article  Google Scholar 

  99. Turcheniuk, K.; Tarasevych, A.V.; Kukhar, V.P.; Boukherroub, R.; Szunerits, S.: Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22), 10729–10752 (2013). https://doi.org/10.1039/C3NR04131J

    Article  Google Scholar 

  100. Said, N.; Hasbullah, H.; Abidin, M.N.Z.; Ismail, A.F.; Goh, P.S.; Othman, M.H.D.; Kadir, S.H.S.A.; Kamal, F.; Abdullah, M.S.; Ng, B.C.: Facile modification of polysulfone hollow-fiber membranes via the incorporation of well-dispersed iron oxide nanoparticles for protein purification. J. Appl. Polym. Sci. 136(21), 47502 (2019). https://doi.org/10.1002/app.47502

    Article  Google Scholar 

  101. Agbaje, T.A.; Al-Gharabli, S.; Mavukkandy, M.O.; Kujawa, J.; Arafat, H.A.: PVDF/magnetite blend membranes for enhanced flux and salt rejection in membrane distillation. Desalination 436, 69–80 (2018). https://doi.org/10.1016/j.desal.2018.02.012

    Article  Google Scholar 

  102. Chai, P.V.; Mahmoudi, E.; Mohammad, A.W.; Choy, P.Y.: Iron oxide decorated graphene oxide embedded polysulfone mixed-matrix membrane: comparison of different types mixed-matrix membranes on antifouling and performance. IOP Conf. Ser. Earth Environ. Sci. 463, 012174 (2020). https://doi.org/10.1088/1755-1315/463/1/012174

    Article  Google Scholar 

  103. Patel, S.; Hota, G.: Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv. 6(19), 15402–15414 (2016). https://doi.org/10.1039/C5RA20345G

    Article  Google Scholar 

  104. Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R.; Mohammad, A.W.: Enhancing morphology and separation performance of polyamide 6,6 membranes By minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9(1), 1216 (2019). https://doi.org/10.1038/s41598-018-38060-x

    Article  Google Scholar 

  105. Li, Y.; Huang, S.; Zhou, S.; Fane, A.G.; Zhang, Y.; Zhao, S.: Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds. J. Membr. Sci. 556, 154–163 (2018). https://doi.org/10.1016/j.memsci.2018.04.004

    Article  Google Scholar 

  106. Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y.: Polymeric nanocomposite membranes for water treatment: a review. Environ. Chem. Lett. 17(4), 1539–1551 (2019). https://doi.org/10.1007/s10311-019-00895-9

    Article  Google Scholar 

  107. Pendergast, M.M.; Hoek, E.M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011). https://doi.org/10.1039/C0EE00541J

    Article  Google Scholar 

  108. Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

    Article  Google Scholar 

Download references

Acknowledgements

The first and corresponding authors would like to acknowledge Universiti Teknologi Malaysia (UTM) for providing the support through UTMSHINE Signature Research Grant (Vot No. Q.J130000.2451.07G79).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei Jye Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawi, N.S.M., Lau, W.J., Yusof, N. et al. The Impacts of Iron Oxide Nanoparticles on Membrane Properties for Water and Wastewater Applications: a Review. Arab J Sci Eng 47, 5443–5464 (2022). https://doi.org/10.1007/s13369-021-06373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06373-1

Keywords

Navigation