Skip to main content
Log in

A comprehensive investigation of the interactions of human serum albumin with polymeric and hybrid nanoparticles

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs’ in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein’s structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA’s secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and materials as well as software application or custom code support their published claims and comply with field standards. All data generated or analysed during this study are included in this published article.

References

  1. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24. https://doi.org/10.1038/s41573-020-0090-8.

    Article  CAS  PubMed  Google Scholar 

  2. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42:742–55.

    PubMed  PubMed Central  Google Scholar 

  3. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, Taran F, Georgin D, Couvreur P, Taverna M. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip® system. Electrophoresis. 2007;28:2252–61. https://doi.org/10.1002/elps.200600694.

    Article  CAS  PubMed  Google Scholar 

  4. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng. 2001;91:233–44. https://doi.org/10.1016/S1389-1723(01)80127-4.

    Article  CAS  PubMed  Google Scholar 

  5. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105:14265–70. https://doi.org/10.1073/pnas.0805135105.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–57. https://doi.org/10.1038/nmat2442.

    Article  CAS  PubMed  Google Scholar 

  7. Schöttler S, Landfester K, Mailänder V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed. 2016;55:8806–15. https://doi.org/10.1002/anie.201602233.

    Article  CAS  Google Scholar 

  8. Yesylevskyy SO, Ramseyer C, Savenko M, Mura S, Couvreur P. Low-density lipoproteins and human serum albumin as carriers of squalenoylated drugs: insights from molecular simulations. Mol Pharm. 2018;15:585–91. https://doi.org/10.1021/acs.molpharmaceut.7b00952.

    Article  CAS  PubMed  Google Scholar 

  9. Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S, Desmaële D, Couvreur P, Guenoun P, Renault JP, Testard F. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale. 2020;12:2793–809. https://doi.org/10.1039/c9nr06485k.

    Article  CAS  PubMed  Google Scholar 

  10. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81. https://doi.org/10.1038/nnano.2013.181.

    Article  CAS  PubMed  Google Scholar 

  11. Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of stealthy nanomaterials. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Papini E, Tavano R, Mancin F. Opsonins and dysopsonins of nanoparticles: facts, concepts, and methodological guidelines. Front Immunol. 2020;11:567365. https://doi.org/10.3389/fimmu.2020.567365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles–a strategic approach in drug delivery. Drug Deliv. 2016;23:2668–76. https://doi.org/10.3109/10717544.2015.1048488.

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Xu P, Ding HM, Yu YS, Huo D, Ma YQ. Tailoring the component of protein corona via simple chemistry. Nat Commun. 2019;10:10. https://doi.org/10.1038/s41467-019-12470-5.

    Article  CAS  Google Scholar 

  15. Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir. 2004;20:10639–47. https://doi.org/10.1021/la0484725.

    Article  CAS  PubMed  Google Scholar 

  16. Satzer P, Svec F, Sekot G, Jungbauer A. Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng Life Sci. 2016;16:238–46. https://doi.org/10.1002/elsc.201500059.

    Article  CAS  PubMed  Google Scholar 

  17. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26. https://doi.org/10.1186/1477-3155-11-26.

    Article  CAS  Google Scholar 

  18. Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 2012;6:4585–602. https://doi.org/10.1021/nn300415x.

    Article  CAS  PubMed  Google Scholar 

  19. Verrecchia T, Huve P, Bazile D, Veillard M, Spenlehauer G, Couvreur P. Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. J Biomed Mater Res. 1993;27:1019–28. https://doi.org/10.1002/jbm.820270807.

    Article  CAS  PubMed  Google Scholar 

  20. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007;7:914–20. https://doi.org/10.1021/nl062743+.

    Article  CAS  PubMed  Google Scholar 

  21. Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, Calzolai L. Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 2011;11:4480–4. https://doi.org/10.1021/nl202909s.

    Article  CAS  PubMed  Google Scholar 

  22. Teichroeb JH, Forrest JA, Jones LW. Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres. Eur Phys J E. 2008;26:411–5. https://doi.org/10.1140/epje/i2007-10342-9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Bolsa-Ferruz M, Marichal L, Porcel E, Salado-Leza D, Lux F, Tillement O, Renault J-P, Pin S, Wien F, Lacombe S. Human serum albumin in the presence of AGuIX nanoagents: structure stabilisation without direct interaction. Int J Mol Sci. 2020;21: 4673. https://doi.org/10.3390/ijms21134673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Devineau S, Kiger L, Galacteros F, Baudin-Creuza V, Marden M, Renault JP, Pin S. Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers. Blood Adv. 2018;2:90–4. https://doi.org/10.1182/bloodadvances.2017012153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peracchia MT, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu JC, Desmaële D, d’Angelo J, Müller RH, Couvreur P. Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials. 1999;20:1269–75. https://doi.org/10.1016/S0142-9612(99)00021-6.

    Article  CAS  PubMed  Google Scholar 

  26. Cutrone, Li C-S, Benkovics M-MQ, Malanga C. Design of engineered cyclodextrin derivatives for spontaneous coating of highly porous metal-organic framework nanoparticles in aqueous media. Nanomaterials. 2019;9:1103. https://doi.org/10.3390/nano9081103.

    Article  CAS  PubMed  Google Scholar 

  27. Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, Vargas-Berenguel A, Semiramoth N, Daoud-Mahammed S, Nicolas V, Martineau C, Taulelle F, Vigneron J, Etcheberry A, Serre C, Gref R. A green strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep. 2015;5: 7925. https://doi.org/10.1038/srep07925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5. https://doi.org/10.1073/pnas.0608582104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale. 2015;7:6045–58. https://doi.org/10.1039/c5nr00733j.

    Article  CAS  PubMed  Google Scholar 

  30. Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA. 2007;104:8691–6. https://doi.org/10.1073/pnas.0701250104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davidson AM, Brust M, Cooper DL, Volk M. Sensitive analysis of protein adsorption to colloidal gold by differential centrifugal sedimentation. Anal Chem. 2017;89:6807–14. https://doi.org/10.1021/acs.analchem.7b01229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan Y, Liu Y, Shen W, Zhong W. Fluorescamine labeling for assessment of protein conformational change and binding affinity in protein-nanoparticle interaction. Anal Chem. 2017;89:12160–7. https://doi.org/10.1021/acs.analchem.7b02810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Paoli Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2010;4:365–79. https://doi.org/10.1021/nn9011187.

    Article  CAS  Google Scholar 

  34. Kharazian B, Hadipour NL, Ejtehadi MR. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int J Biochem Cell Biology. 2016;75:162–74.

    Article  CAS  Google Scholar 

  35. Lee H. Effects of Nanoparticle Electrostatics and protein–protein interactions on corona formation: conformation and hydrodynamics. Small. 2020;16: 1906598. https://doi.org/10.1002/smll.201906598.

    Article  CAS  Google Scholar 

  36. Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. Nanoscale Adv. 2020;2:563–82. https://doi.org/10.1039/c9na00537d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ural MS, Menéndez-Miranda M, Salzano G, Mathurin J, Aybeke EN, Deniset-Besseau A, Dazzi A, Porcino M, Martineau-Corcos C, Gref R. Compartmentalized polymeric nanoparticles deliver vancomycin in a pH-Responsive manner. Pharmaceutics. 2021;13:1992. https://doi.org/10.3390/pharmaceutics13121992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agostoni V, Chalati T, Horcajada P, Willaime H, Anand R, Semiramoth N, Baati T, Hall S, Maurin G, Chacun H, Bouchemal K, Martineau C, Taulelle F, Couvreur P, Rogez-Kreuz C, Clayette P, Monti S, Serre C, Gref R. Towards an improved anti‐HIV activity of NRTI via metal–organic frameworks nanoparticles. Adv Healthc Mater. 2013;2:1630–7. https://doi.org/10.1002/adhm.201200454.

    Article  CAS  PubMed  Google Scholar 

  39. Qiu J, Li X, Steenkeste K, Barroca-Aubry N, Aymes-Chodur C, Roger P, Casas-Solvas JM, Vargas-Berenguel A, Rihouey C, Picton L, Gref R. Self-assembled multifunctional core–shell highly porous metal–organic framework nanoparticles. Int J Pharm. 2020;581:119281. https://doi.org/10.1016/j.ijpharm.2020.119281.

    Article  CAS  PubMed  Google Scholar 

  40. Rossi E, Tran NT, Hirtz C, Lehmann S, Taverna M. Efficient extraction of intact HSA-Aβ peptide complexes from sera: toward albuminome biomarker identification. Talanta. 2020;216: 121002. https://doi.org/10.1016/j.talanta.2020.121002.

    Article  CAS  PubMed  Google Scholar 

  41. Lees JG, Smith BR, Wien F, Miles AJ, Wallace BA. CDtool - an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal Biochem. 2004;332:285–9. https://doi.org/10.1016/j.ab.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  42. Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci USA. 2015;112:E3095–3103. https://doi.org/10.1073/pnas.1500851112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wien F, Wallace BA. Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Appl Spectrosc. 2005;59:1109–13. https://doi.org/10.1366/0003702055012546.

    Article  CAS  PubMed  Google Scholar 

  44. Miles AJ, Janes RW, Brown A, Clarke DT, Sutherland JC, Tao Y, Wallace BA, Hoffmann SV. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. J Synchrotron Radiat. 2008;15:420–2. https://doi.org/10.1107/S0909049508009606.

    Article  CAS  PubMed  Google Scholar 

  45. Wien F, Miles AJ, Lees JG, Vrønning Hoffmann S, Wallace BA. VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J Synchrotron Radiat. 2005;12:517–23. https://doi.org/10.1107/S0909049505006953.

    Article  CAS  PubMed  Google Scholar 

  46. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3. https://doi.org/10.1126/science.8128245.

    Article  CAS  PubMed  Google Scholar 

  47. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Controlled Release. 1998;50:31–40. https://doi.org/10.1016/S0168-3659(97)00106-5.

    Article  CAS  Google Scholar 

  48. Tobío M, Gref R, Sánchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15:270–5. https://doi.org/10.1023/A:1011922819926.

    Article  PubMed  Google Scholar 

  49. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug deliveryand imaging. Nat Mater. 2010;9:172–8. https://doi.org/10.1038/nmat2608.

    Article  CAS  PubMed  Google Scholar 

  50. Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, Najjar MF, Zakhama A, Couvreur P, Serre C, Horcajada P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem Sci. 2013;4:1597–607. https://doi.org/10.1039/c3sc22116d.

    Article  CAS  Google Scholar 

  51. Li X, Salzano G, Qiu J, Menard M, Berg K, Theodossiou T, Ladavière C, Gref R. Drug-loaded lipid-coated hybrid organic-inorganic stealth nanoparticles for cancer therapy. Front Bioeng Biotechnol. 2020;8:1027. https://doi.org/10.3389/fbioe.2020.01027.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li X, Lachmanski L, Safi S, Sene S, Serre C, Greneche JM, Zhang J, Gref R. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Sci Rep. 2017;7:13142. https://doi.org/10.1038/s41598-017-13323-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Christodoulou I, Serre C, Gref R. Metal-organic frameworks for drug delivery: degradation mechanism and in vivo fate. In: Metal-organic frameworks for biomedical applications. Elsevier; 2020. p. 467–89. https://doi.org/10.1016/B978-0-12-816984-1.00023-8.

    Chapter  Google Scholar 

  54. Ramírez-García G, d’Orlyé F, Gutiérrez-Granados S, Martínez-Alfaro M, Mignet N, Richard C, Varenne A. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: the non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. Colloids Surf B Biointerfaces. 2017;159:437–44. https://doi.org/10.1016/j.colsurfb.2017.08.012.

    Article  CAS  PubMed  Google Scholar 

  55. Marie A-L, Tran NT, Taverna M. Characterization of chemical and physical modifications of human serum albumin by capillary zone electrophoresis. Methods Mol Biol. 2016;1466:151–63. https://doi.org/10.1007/978-1-4939-4014-1_12.

    Article  CAS  PubMed  Google Scholar 

  56. Marie A-L, Przybylski C, Gonnet F, Daniel R, Urbain R, Chevreux G, Jorieux S, Taverna M. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin. Anal Chim Acta. 2013;800:103–10. https://doi.org/10.1016/j.aca.2013.09.023.

    Article  CAS  PubMed  Google Scholar 

  57. Coty JB, Varenne F, Benmalek A, Garsaa O, Le Potier I, Taverna M, Smadja C, Vauthier C. Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis. Eur J Pharm Biopharm. 2018;130:48–58. https://doi.org/10.1016/j.ejpb.2018.06.014.

    Article  CAS  PubMed  Google Scholar 

  58. Belder D, Deege A, Husmann H, Kohler F, Ludwig M. Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis. 2001;22:3813–8. https://doi.org/10.1002/1522-2683(200109)22:17%3c3813::AID-ELPS3813%3e3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  59. Bar-Or D, Bar-Or R, Rael LT, Gardner DK, Slone DS, Craun ML. Heterogeneity and oxidation status of commercial human albumin preparations in clinical use*. Crit Care Med. 2005;33:1638–41. https://doi.org/10.1097/01.CCM.0000169876.14858.91.

    Article  CAS  PubMed  Google Scholar 

  60. Mao P, Wang D. Top-down proteomics of a Drop of blood for diabetes monitoring. J Proteome Res. 2014;13:1560–9. https://doi.org/10.1021/pr401074t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers DM, Jasim SB, Dyer NT, Auvray F, Réfrégiers M, Hirst JD. Electronic circular dichroism spectroscopy of proteins. Chem. 2019;5:2751–74. https://doi.org/10.1016/j.chempr.2019.07.008.

    Article  CAS  Google Scholar 

  62. Bulheller BM, Miles AJ, Wallace BA, Hirst JD. Charge-transfer transitions in the vacuum-ultraviolet of protein circular dichroism spectra. J Phys Chem B. 2008;112:1866–74. https://doi.org/10.1021/jp077462k.

    Article  CAS  PubMed  Google Scholar 

  63. Kamal JKA, Zhao L, Zewail AH. Ultrafast hydration dynamics in protein unfolding: human serum albumin. Proc Natl Acad Sci USA. 2004;101:13411–6. https://doi.org/10.1073/pnas.0405724101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maciążek-Jurczyk M, Janas K, Pożycka J, Szkudlarek A, Rogóż W, Owczarzy A, Kulig K. Human serum albumin aggregation/fibrillation and its abilities to drugs binding. Molecules. 2020. https://doi.org/10.3390/molecules25030618.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bhattacharya M, Jain N, Mukhopadhyay S. Insights into the mechanism of aggregation and fibril formation from bovine serum albumin. J Phys Chem B. 2011;115:4195–205. https://doi.org/10.1021/jp111528c.

    Article  CAS  PubMed  Google Scholar 

  66. Wetzel R, Becker M, Behlke J, Billwitz H, BoHM S, Ebert B, Hamann H, Krumbiegel J, Lassmann G. Temperature behaviour of human serum albumin. Eur J Biochem. 1980;104:469–78. https://doi.org/10.1111/j.1432-1033.1980.tb04449.x.

    Article  CAS  PubMed  Google Scholar 

  67. Samanta N, Mahanta D, Das, Hazra S, Kumar GS, Mitra RK. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie. 2014;104:81–9. https://doi.org/10.1016/j.biochi.2014.05.009.

    Article  CAS  PubMed  Google Scholar 

  68. Das NK, Ghosh N, Kale AP, Mondal R, Anand U, Ghosh S, Tiwari VK, Kapur M, Mukherjee S. Temperature induced morphological transitions from native to unfolded aggregated states of human serum albumin. J Phys Chem B. 2014;118:7267–76. https://doi.org/10.1021/jp5030944.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stéphanie Yen-Nicolaÿ from the Plateforme de Protéomique (Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Chatenay Malabry, France) for help with LC-MS investigations and fruitful discussions. SR-CD measurements on DISCO beamline at SOLEIL Synchrotron light source were performed under the proposals 20180883 and 20171494. We thank Matthieu REFREGIERS and Frank WIEN for welcoming us to the DISCO beamline.

Funding

This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (Labex NanoSaclay, reference: ANR-10-LABX-0035; Merve Seray Ural’s fellowship, reference ; ANR-11-IDEX-0003-02) and by ANR-20-CE19-0020.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: RG, CS. Performed the experiments: MSU, JMJ, XL, MAT. Data treatment: MSU, JMJ, FW, CS, RG. Wrote the manuscript: MSU, CS, RG. Funding acquisition: RG, CS.

Corresponding authors

Correspondence to Claire Smadja or Ruxandra Gref.

Ethics declarations

Ethics approval and consent to participate

The experiments comply with the current laws of the country in which they were performed.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

Merve Seray Ural, Joice Maria Joseph, Frank Wien, Xue Li, My-An Tran, Myriam Taverna, Claire Smadja, Ruxandra Gref declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 190 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ural, M.S., Joseph, J.M., Wien, F. et al. A comprehensive investigation of the interactions of human serum albumin with polymeric and hybrid nanoparticles. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01578-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01578-x

Keywords

Navigation