Skip to main content

Protein Corona of Nanoparticles and Its Application in Drug Delivery

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy
  • 807 Accesses

Abstract

The nanoparticles (NP) as a drug delivery system have demonstrated tremendous benefits including improved drug solubility, enhanced pharmacodynamics, targeted drug delivery, and potential of theranostics. Understanding of how NP behaves under the biological settings will provide insights to optimize the drug delivery performance. Up to now, large efforts have been focused on unveiling the NP-cell interaction, especially the NP-protein interactions. In biological fluid either in vitro or in vivo, the adsorption of proteins on NP is inevitable due to the reactive surface of NP. In fact, the NP together with its adsorbed proteins (protein corona) is what the cell really “sees” during drug delivery. For the last decade, the composition, evolution, and biological impact of protein corona on NP have attracted intensive research interests. The protein corona altered the physiochemical identity, cytotoxic profile as well as drug delivery efficiency of NP. Thus, a comprehensive understanding of protein corona will help guide the design and optimization of NP-mediated drug delivery. This chapter will introduce the current progress of protein corona researches and the challenges of modulating protein corona to improve the drug delivery of NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bao, S. Mitragotri, S. Tong, Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Couvreur, Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev. 65(1), 21–23 (2013)

    CAS  PubMed  Google Scholar 

  3. C.M. Hartshorn et al., Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 12(1), 24–43 (2017)

    PubMed  PubMed Central  Google Scholar 

  4. E. Mahon et al., Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161(2), 164–174 (2012)

    CAS  PubMed  Google Scholar 

  5. J. Wolfram et al., The nano-plasma interface: Implications of the protein corona. Colloids Surf. B Biointerfaces 124, 17–24 (2014)

    CAS  PubMed  Google Scholar 

  6. P.P. Karmali, D. Simberg, Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 8(3), 343–357 (2011)

    CAS  PubMed  Google Scholar 

  7. D. Walczyk et al., What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132(16), 5761–5768 (2010)

    CAS  PubMed  Google Scholar 

  8. P.C. Ke et al., A decade of the protein corona. ACS Nano 11(12), 11773–11776 (2017)

    CAS  PubMed  Google Scholar 

  9. S. Tenzer et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772 (2013)

    CAS  PubMed  Google Scholar 

  10. L. Wang et al., Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J. Am. Chem. Soc. 135(46), 17359–17368 (2013)

    CAS  PubMed  Google Scholar 

  11. M. Wang et al., Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy. Nanoscale 7(37), 15191–15196 (2015)

    CAS  PubMed  Google Scholar 

  12. L. Vroman, Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196(4853), 476–477 (1962)

    CAS  PubMed  Google Scholar 

  13. D. Docter et al., The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121 (2015)

    CAS  PubMed  Google Scholar 

  14. T. Cedervall et al., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104(7), 2050–2055 (2007)

    CAS  PubMed  Google Scholar 

  15. E. Hellstrand et al., Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276(12), 3372–3381 (2009)

    CAS  PubMed  Google Scholar 

  16. S.S. Raesch et al., Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano 9(12), 11872–11885 (2015)

    CAS  PubMed  Google Scholar 

  17. G. Caracciolo, Liposome–protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine 11(3), 543–557 (2015)

    CAS  PubMed  Google Scholar 

  18. A. Bigdeli et al., Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10(3), 3723–3737 (2016)

    CAS  PubMed  Google Scholar 

  19. M. Papi et al., Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale 9(29), 10327–10334 (2017)

    CAS  PubMed  Google Scholar 

  20. K. Saha, D.F. Moyano, V.M. Rotello, Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Mater. Horiz. 1(1), 102–105 (2014)

    CAS  Google Scholar 

  21. R. Gref et al., ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 18(3-4), 301–313 (2000)

    CAS  PubMed  Google Scholar 

  22. Q. Dai, C. Walkey, W.C. Chan, Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. Engl. 53(20), 5093–5096 (2014)

    CAS  PubMed  Google Scholar 

  23. S. Schöttler et al., Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11(4), 372 (2016)

    PubMed  Google Scholar 

  24. S. Behzadi et al., Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface. Colloids Surf. B Biointerfaces 123, 143–149 (2014)

    CAS  PubMed  Google Scholar 

  25. M. Kopp, S. Kollenda, M. Epple, Nanoparticle–protein interactions: therapeutic approaches and supramolecular chemistry. Acc. Chem. Res. 50(6), 1383–1390 (2017)

    CAS  PubMed  Google Scholar 

  26. M.P. Monopoli et al., Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779 (2012)

    CAS  PubMed  Google Scholar 

  27. D. Docter et al., No king without a crown–impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine 10(3), 503–519 (2015)

    CAS  PubMed  Google Scholar 

  28. N.V. Konduru et al., Protein corona: implications for nanoparticle interactions with pulmonary cells. Part. Fibre Toxicol. 14(1), 42 (2017)

    PubMed  PubMed Central  Google Scholar 

  29. S. Tenzer et al., Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9), 7155–7167 (2011)

    CAS  PubMed  Google Scholar 

  30. R. García-Álvarez et al., In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10(3), 1256–1264 (2018)

    PubMed  Google Scholar 

  31. M. Mahmoudi et al., Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7(8), 6555–6562 (2013)

    CAS  PubMed  Google Scholar 

  32. V. Gorshkov et al., Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environ. Sci. Nano 6(4), 1089–1098 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. X. Liu, C. Yan, K.L. Chen, Adsorption of human serum albumin on graphene oxide: implications for protein corona formation and conformation. Environ. Sci. Technol. 53(15), 8631–8639 (2018)

    Google Scholar 

  34. C. Pisani et al., The timeline of corona formation around silica nanocarriers highlights the role of the protein interactome. Nanoscale 9(5), 1840–1851 (2017)

    CAS  PubMed  Google Scholar 

  35. M.A. Dobrovolskaia et al., Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5(2), 106–117 (2009)

    CAS  PubMed  Google Scholar 

  36. M. Lundqvist et al., The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9), 7503–7509 (2011)

    CAS  PubMed  Google Scholar 

  37. A. Cox et al., Evolution of nanoparticle protein corona across the blood–brain barrier. ACS Nano 12(7), 7292–7300 (2018)

    CAS  PubMed  Google Scholar 

  38. S. Milani et al., Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3), 2532–2541 (2012)

    CAS  PubMed  Google Scholar 

  39. M. Hadjidemetriou, Z. Al-Ahmady, K. Kostarelos, Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 8(13), 6948–6957 (2016)

    CAS  PubMed  Google Scholar 

  40. F. Chen et al., Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12(4), 387 (2017)

    CAS  PubMed  Google Scholar 

  41. M. Lundqvist et al., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105(38), 14265–14270 (2008)

    CAS  PubMed  Google Scholar 

  42. C. Weber et al., Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater. 76, 217–224 (2018)

    CAS  PubMed  Google Scholar 

  43. M. Hadjidemetriou, K. Kostarelos, Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12(4), 288 (2017)

    CAS  PubMed  Google Scholar 

  44. A. Lesniak et al., Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7), 5845–5857 (2012)

    CAS  PubMed  Google Scholar 

  45. G. Caracciolo et al., Selective targeting capability acquired with a protein corona adsorbed on the surface of 1, 2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Appl. Mater. Interfaces 5(24), 13171–13179 (2013)

    CAS  PubMed  Google Scholar 

  46. C. Gunawan et al., Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J. Mater. Chem. B 2(15), 2060–2083 (2014)

    CAS  PubMed  Google Scholar 

  47. C. Corbo et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11(1), 81–100 (2016)

    CAS  PubMed  Google Scholar 

  48. M.N. Gupta, I. Roy, How corona formation impacts nanomaterials as drug carriers. Mol. Pharm. 17(3), 725–737 (2020)

    CAS  PubMed  Google Scholar 

  49. D. Hühn et al., Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7(4), 3253–3263 (2013)

    PubMed  Google Scholar 

  50. A. Salvati et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137 (2013)

    CAS  PubMed  Google Scholar 

  51. M. Safi et al., The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35), 9353–9363 (2011)

    CAS  PubMed  Google Scholar 

  52. W. Zhang et al., The effect of serum in culture on RNAi efficacy through modulation of polyplexes size. Biomaterials 35(1), 567–577 (2014)

    CAS  PubMed  Google Scholar 

  53. W. Zhang et al., Ratio of polycation and serum is a crucial index for determining the RNAi efficiency of polyplexes. ACS Appl. Mater. Interfaces 9(50), 43529–43537 (2017)

    CAS  PubMed  Google Scholar 

  54. N.P. Mortensen et al., Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5(14), 6372–6380 (2013)

    CAS  PubMed  Google Scholar 

  55. A. Elouahabi, J.-M. Ruysschaert, Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 11(3), 336–347 (2005)

    CAS  PubMed  Google Scholar 

  56. H. Eliyahu et al., Novel dextran–spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther. 12(6), 494 (2005)

    CAS  PubMed  Google Scholar 

  57. F. Bertoli et al., The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano 10(11), 10471–10479 (2016)

    CAS  PubMed  Google Scholar 

  58. F. Wang et al., Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5(22), 10868–10876 (2013)

    CAS  PubMed  Google Scholar 

  59. F. Wang et al., The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9(8), 1159–1168 (2013)

    CAS  PubMed  Google Scholar 

  60. F. Pederzoli et al., Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(6), e1467 (2017)

    Google Scholar 

  61. C. Carrillo-Carrion, M. Carril, W.J. Parak, Techniques for the experimental investigation of the protein corona. Curr. Opin. Biotechnol. 46, 106–113 (2017)

    CAS  PubMed  Google Scholar 

  62. S.K. Sohaebuddin et al., Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7(1), 22 (2010)

    PubMed  PubMed Central  Google Scholar 

  63. V. Mirshafiee et al., The importance of selecting a proper biological milieu for protein corona analysis in vitro: human plasma versus human serum. Int. J. Biochem. Cell Biol. 75, 188–195 (2016)

    CAS  PubMed  Google Scholar 

  64. M.P. Monopoli et al., Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525–2534 (2011)

    CAS  PubMed  Google Scholar 

  65. C.D. Walkey et al., Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3), 2439–2455 (2014)

    CAS  PubMed  Google Scholar 

  66. J. Müller et al., Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 115, 1–8 (2017)

    PubMed  Google Scholar 

  67. Z. Wang et al., Specifically formed corona on silica nanoparticles enhances transforming growth factor β1 activity in triggering lung fibrosis. ACS Nano 11(2), 1659–1672 (2017)

    CAS  PubMed  Google Scholar 

  68. N. Ali et al., Analysis of nanoparticle–protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology 10(2), 226–234 (2016)

    CAS  PubMed  Google Scholar 

  69. J. Yu et al., ZnO interactions with biomatrices: effect of particle size on ZnO-protein corona. Nanomaterials 7(11), 377 (2017)

    PubMed Central  Google Scholar 

  70. T. Bewersdorff et al., Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int. J. Nanomedicine 14, 7861 (2019)

    PubMed  PubMed Central  Google Scholar 

  71. M. Magro et al., Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal. Bioanal. Chem. 410(12), 2949–2959 (2018)

    CAS  PubMed  Google Scholar 

  72. M. Mahmoudi et al., Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 14(1), 6–12 (2014)

    CAS  PubMed  Google Scholar 

  73. S. Bhattacharjee, DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016)

    CAS  PubMed  Google Scholar 

  74. K. Fischer, M. Schmidt, Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91 (2016)

    CAS  PubMed  Google Scholar 

  75. W. Zhang et al., Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy. PLoS One 7(2), e31957 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. A.P. Ault et al., Protein corona-induced modification of silver nanoparticle aggregation in simulated gastric fluid. Environ. Sci. Nano 3(6), 1510–1520 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. S. Dominguez-Medina et al., Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 10(2), 2103–2112 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. D.T. Jayaram et al., Protein corona in response to flow: effect on protein concentration and structure. Biophys. J. 115(2), 209–216 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. S. Qu et al., In situ investigation on the protein corona formation of quantum dots by using fluorescence resonance energy transfer. Small, 1907633 (2020)

    Google Scholar 

  80. A.M. Clemments, P. Botella, C.C. Landry, Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity. ACS Appl. Mater. Interfaces 7(39), 21682–21689 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. C. Vidaurre-Agut et al., Protein corona over mesoporous silica nanoparticles: influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics. ACS Omega 4(5), 8852–8861 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. A.M. Clemments et al., Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Adv. 4(55), 29134–29138 (2014)

    CAS  Google Scholar 

  83. E.D. Kaufman et al., Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and ζ-potential measurements. Langmuir 23(11), 6053–6062 (2007)

    CAS  PubMed  Google Scholar 

  84. D. Di Silvio et al., The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. J. Colloid Interface Sci. 504, 741–750 (2017)

    PubMed  Google Scholar 

  85. S. Lindman et al., Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 7(4), 914–920 (2007)

    CAS  PubMed  Google Scholar 

  86. R. Huang, B.L. Lau, Biomolecule–nanoparticle interactions: elucidation of the thermodynamics by isothermal titration calorimetry. Biochim. Biophys. Acta. Gen. Subj. 1860(5), 945–956 (2016)

    CAS  Google Scholar 

  87. S. Winzen et al., Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7(7), 2992–3001 (2015)

    CAS  PubMed  Google Scholar 

  88. O.K. Kari et al., Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Deliv. Transl. Res. 7(2), 228–240 (2017)

    CAS  PubMed  Google Scholar 

  89. A. Patra et al., Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance. Small 12(9), 1174–1182 (2016)

    CAS  PubMed  Google Scholar 

  90. J.L. Rogowski et al., A “chemical nose” biosensor for detecting proteins in complex mixtures. Analyst 141(19), 5627–5636 (2016)

    CAS  PubMed  Google Scholar 

  91. M. Assfalg et al., The study of transient protein–nanoparticle interactions by solution NMR spectroscopy. Biochim. Biophys. Acta Proteins Proteomics 1864(1), 102–114 (2016)

    CAS  PubMed  Google Scholar 

  92. M. Carril et al., In situ detection of the protein corona in complex environments. Nat. Commun. 8(1), 1–5 (2017)

    CAS  Google Scholar 

  93. P.M. Kelly et al., Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10(5), 472 (2015)

    CAS  PubMed  Google Scholar 

  94. M. Kokkinopoulou et al., Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale 9(25), 8858–8870 (2017)

    CAS  PubMed  Google Scholar 

  95. C. Corbo et al., Effects of the protein corona on liposome–liposome and liposome–cell interactions. Int. J. Nanomedicine 11, 3049 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  96. A.C. Weiss et al., In situ characterization of protein corona formation on silica microparticles using confocal laser scanning microscopy combined with microfluidics. ACS Appl. Mater. Interfaces 11(2), 2459–2469 (2019)

    CAS  PubMed  Google Scholar 

  97. A.M. Clemments, P. Botella, C.C. Landry, Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy. J. Am. Chem. Soc. 139(11), 3978–3981 (2017)

    CAS  PubMed  Google Scholar 

  98. M. Hadjidemetriou et al., In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9(8), 8142–8156 (2015)

    CAS  PubMed  Google Scholar 

  99. D. Glancy et al., Characterizing the protein corona of sub-10 nm nanoparticles. J. Control. Release 304, 102–110 (2019)

    CAS  PubMed  Google Scholar 

  100. S. Pujals, L. Albertazzi, Super-resolution microscopy for nanomedicine research. ACS Nano 13(9), 9707–9712 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  101. N. Feiner-Gracia et al., Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona. Small 13(41), 1701631 (2017)

    Google Scholar 

  102. S. Runa et al., TiO2 nanoparticle-induced oxidation of the plasma membrane: importance of the protein corona. J. Phys. Chem. B 121(37), 8619–8625 (2017)

    CAS  PubMed  Google Scholar 

  103. J. Schaefer et al., Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6(6), 4603–4614 (2012)

    CAS  PubMed  Google Scholar 

  104. C. Corbo et al., Unveiling the in vivo protein corona of circulating leukocyte-like carriers. ACS Nano 11(3), 3262–3273 (2017)

    CAS  PubMed  Google Scholar 

  105. J. Hühn et al., Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: a comparison of experimental techniques and methodological relevance. Int. J. Biochem. Cell Biol. 75, 148–161 (2016)

    PubMed  Google Scholar 

  106. T. Miclaus et al., Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett. 14(4), 2086–2093 (2014)

    CAS  PubMed  Google Scholar 

  107. M. Qin et al., Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics 10(3), 1213 (2020)

    PubMed  PubMed Central  Google Scholar 

  108. O. Koshkina et al., Temperature-triggered protein adsorption on polymer-coated nanoparticles in serum. Langmuir 31(32), 8873–8881 (2015)

    CAS  PubMed  Google Scholar 

  109. F. Mousseau et al., Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. Nanoscale Adv. (2020). https://doi.org/10.1039/C9NA00779B

  110. N. Feiner-Gracia et al., Super-resolution imaging of structure, molecular composition, and stability of single oligonucleotide polyplexes. Nano Lett. 19(5), 2784–2792 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  111. B. Kharazian, N. Hadipour, M. Ejtehadi, Understanding the nanoparticle–protein corona complexes using computational and experimental methods. Int. J. Biochem. Cell Biol. 75, 162–174 (2016)

    CAS  PubMed  Google Scholar 

  112. D. Dell’Orco et al., Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomedicine 8(8), 1271–1281 (2012)

    PubMed  Google Scholar 

  113. X. Lu et al., Tailoring the component of protein corona via simple chemistry. Nat. Commun. 10(1), 1–14 (2019)

    Google Scholar 

  114. H.-M. Ding, Y.-Q. Ma, Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 35(30), 8703–8710 (2014)

    CAS  PubMed  Google Scholar 

  115. S. Khan, A. Gupta, C.K. Nandi, Controlling the fate of protein corona by tuning surface properties of nanoparticles. J. Phys. Chem. Lett. 4(21), 3747–3752 (2013)

    CAS  Google Scholar 

  116. E.J. Tollefson et al., Preferential binding of cytochrome c to anionic ligand-coated gold nanoparticles: a complementary computational and experimental approach. ACS Nano 13(6), 6856–6866 (2019)

    CAS  PubMed  Google Scholar 

  117. J. Wang et al., Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 11(11), 4985–4991 (2011)

    CAS  PubMed  Google Scholar 

  118. L. Shang et al., pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5), 2714–2721 (2007)

    CAS  PubMed  Google Scholar 

  119. M. Mahmoudi et al., Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3(3), 1127–1138 (2011)

    CAS  PubMed  Google Scholar 

  120. C. Cabaleiro-Lago, O. Szczepankiewicz, S. Linse, The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir 28(3), 1852–1857 (2012)

    CAS  PubMed  Google Scholar 

  121. D. Zhang et al., Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 9(2), 666–671 (2009)

    CAS  PubMed  Google Scholar 

  122. A.E. Nel et al., Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543 (2009)

    CAS  PubMed  Google Scholar 

  123. M. Raoufi et al., Probing fibronectin conformation on a protein corona layer around nanoparticles. Nanoscale 10(3), 1228–1233 (2018)

    CAS  PubMed  Google Scholar 

  124. N.O. Fischer et al., Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc. Natl. Acad. Sci. 99(8), 5018–5023 (2002)

    CAS  PubMed  Google Scholar 

  125. D.T. Jayaram et al., Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale 9(22), 7595–7601 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  126. H. Amiri et al., Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 5(18), 8656–8665 (2013)

    CAS  PubMed  Google Scholar 

  127. L. Shang et al., Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 8(5), 661–665 (2012)

    CAS  PubMed  Google Scholar 

  128. M. Falahati et al., A health concern regarding the protein corona, aggregation and disaggregation. Biochim. Biophys. Acta. Gen. Subj. 1893, 971–991 (2019)

    Google Scholar 

  129. W.L. Koh et al., Aggregation and protein corona formation on gold nanoparticles affect viability and liver functions of primary rat hepatocytes. Nanomedicine 11(17), 2275–2287 (2016)

    CAS  PubMed  Google Scholar 

  130. S. Dominguez-Medina et al., Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain. Chem. Eng. 1(7), 833–842 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  131. C. Vasti et al., Effect of the protein corona on the colloidal stability and reactivity of LDH-based nanocarriers. J. Mater. Chem. B 4(11), 2008–2016 (2016)

    CAS  PubMed  Google Scholar 

  132. R. Cukalevski et al., IgG and fibrinogen driven nanoparticle aggregation. Nano Res. 8(8), 2733–2743 (2015)

    CAS  Google Scholar 

  133. S.T. Moerz et al., Formation mechanism for stable hybrid clusters of proteins and nanoparticles. ACS Nano 9(7), 6696–6705 (2015)

    CAS  PubMed  Google Scholar 

  134. V. Mirshafiee et al., Protein corona significantly reduces active targeting yield. Chem. Commun. 49(25), 2557–2559 (2013)

    CAS  Google Scholar 

  135. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. E. Polo et al., Advances toward more efficient targeted delivery of nanoparticles in vivo: understanding interactions between nanoparticles and cells. ACS Nano 11(3), 2397–2402 (2017)

    CAS  PubMed  Google Scholar 

  137. Z.S. Al-Ahmady et al., Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J. Control. Release 276, 157–167 (2018)

    CAS  PubMed  Google Scholar 

  138. Y. Li et al., Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano 6(11), 9485–9495 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  139. A. Pourjavadi, Z.M. Tehrani, N. Mahmoudi, The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating. J. Nanopart. Res. 17(4), 197 (2015)

    Google Scholar 

  140. K. Obst et al., Protein corona formation on colloidal polymeric nanoparticles and polymeric nanogels: impact on cellular uptake, toxicity, immunogenicity, and drug release properties. Biomacromolecules 18(6), 1762–1771 (2017)

    CAS  PubMed  Google Scholar 

  141. Q. Peng et al., Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomedicine 10(2), 205–214 (2015)

    CAS  PubMed  Google Scholar 

  142. A.J. Paula et al., Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 5(17), 8387–8393 (2013)

    CAS  PubMed  Google Scholar 

  143. C. Rodriguez-Quijada et al., Protease degradation of protein coronas and its impact on cancer cells and drug payload release. ACS Appl. Mater. Interfaces 11(16), 14588–14596 (2019)

    CAS  PubMed  Google Scholar 

  144. H. Maeda, H. Nakamura, J. Fang, The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65(1), 71–79 (2013)

    CAS  PubMed  Google Scholar 

  145. M. Sarparanta et al., Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharm. 9(3), 654–663 (2012)

    CAS  PubMed  Google Scholar 

  146. J. Wolfram et al., Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids Surf. B Biointerfaces 114, 294–300 (2014)

    CAS  PubMed  Google Scholar 

  147. F. Wang, A. Salvati, P. Boya, Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol. 8(4), 170271 (2018)

    PubMed  PubMed Central  Google Scholar 

  148. A.K. Varkouhi et al., Endosomal escape pathways for delivery of biologicals. J. Control. Release 151(3), 220–228 (2011)

    CAS  PubMed  Google Scholar 

  149. W. Zhang, C.H. Tung, Real-time visualization of lysosome destruction using a photosensitive toluidine blue nanogel. Chemistry 24(9), 2089–2093 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  150. W. Zhang, C.-H. Tung, Lysosome enlargement enhanced photochemotherapy using a multifunctional nanogel. ACS Appl. Mater. Interfaces 10(5), 4343–4348 (2018)

    CAS  PubMed  Google Scholar 

  151. H. Nejadnik et al., The protein corona around nanoparticles facilitates stem cell labeling for clinical MR imaging. Radiology 286(3), 938–947 (2018)

    PubMed  Google Scholar 

  152. M. Merhi et al., Study of serum interaction with a cationic nanoparticle: implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int. J. Pharm. 423(1), 37–44 (2012)

    CAS  PubMed  Google Scholar 

  153. C. Ge et al., Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. 108(41), 16968–16973 (2011)

    CAS  PubMed  Google Scholar 

  154. S. Kittler et al., Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22(16), 4548–4554 (2010)

    CAS  Google Scholar 

  155. H. Yin et al., Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 5(90), 73963–73973 (2015)

    CAS  Google Scholar 

  156. K. Choi, J.E. Riviere, N.A. Monteiro-Riviere, Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 11(1), 64–75 (2017)

    CAS  PubMed  Google Scholar 

  157. V. Escamilla-Rivera et al., Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol. Lett. 240(1), 172–184 (2016)

    CAS  PubMed  Google Scholar 

  158. T. Ding, J. Sun, Formation of protein corona on nanoparticle affects different complement activation pathways mediated by C1q. Pharm. Res. 37(1), 1–9 (2020)

    Google Scholar 

  159. A. Wang et al., Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv. Healthc. Mater. 8(12), 1801123 (2019)

    Google Scholar 

  160. S. Shahabi et al., Utilizing the protein corona around silica nanoparticles for dual drug loading and release. Nanoscale 7(39), 16251–16265 (2015)

    CAS  PubMed  Google Scholar 

  161. E.L.L. Yeo et al., Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy. J. Mater. Chem. B 5(2), 254–268 (2017)

    CAS  PubMed  Google Scholar 

  162. E.L.L. Yeo et al., Protein corona around gold nanorods as a drug carrier for multimodal cancer therapy. ACS Biomater Sci. Eng. 3(6), 1039–1050 (2017)

    CAS  Google Scholar 

  163. E.L.L. Yeo et al., Protein corona in drug delivery for multimodal cancer therapy in vivo. Nanoscale 10(5), 2461–2472 (2018)

    CAS  PubMed  Google Scholar 

  164. J.C.Y. Kah et al., Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6(8), 6730–6740 (2012)

    CAS  PubMed  Google Scholar 

  165. A. Cifuentes-Rius et al., Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 7(11), 10066–10074 (2013)

    CAS  PubMed  Google Scholar 

  166. S. Palchetti et al., The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta. Biomembr. 1858(2), 189–196 (2016)

    CAS  Google Scholar 

  167. V. Mirshafiee et al., Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016)

    CAS  PubMed  Google Scholar 

  168. Q. Peng et al., Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34(33), 8521–8530 (2013)

    CAS  PubMed  Google Scholar 

  169. F. Giulimondi et al., Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10(1), 1–11 (2019)

    Google Scholar 

  170. S. Ritz et al., Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4), 1311–1321 (2015)

    CAS  PubMed  Google Scholar 

  171. R. Dal Magro et al., Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomedicine 14(2), 429–438 (2018)

    CAS  PubMed  Google Scholar 

  172. J. Simon et al., Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale 10(22), 10731–10739 (2018)

    CAS  PubMed  Google Scholar 

  173. S. Wan et al., The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9(2), 2157–2166 (2015)

    CAS  PubMed  Google Scholar 

  174. C.D. Walkey et al., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4), 2139–2147 (2012)

    CAS  PubMed  Google Scholar 

  175. B. Kang et al., Carbohydrate-based nanocarriers exhibiting specific cell targeting with minimum influence from the protein corona. Angew. Chem. Int. Ed. 54(25), 7436–7440 (2015)

    CAS  Google Scholar 

  176. R. Safavi-Sohi et al., Bypassing protein corona issue on active targeting: zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl. Mater. Interfaces 8(35), 22808–22818 (2016)

    CAS  PubMed  Google Scholar 

  177. Z. Zhang et al., Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 9(3), 2405–2419 (2015)

    CAS  PubMed  Google Scholar 

  178. Z. Zhang et al., Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 10(1), 1–11 (2019)

    Google Scholar 

  179. J. Mosquera et al., Reversible control of protein corona formation on gold nanoparticles using host-guest interactions. ACS Nano (2020). https://doi.org/10.1021/acsnano.9b08752

  180. D. Pozzi et al., The biomolecular corona of nanoparticles in circulating biological media. Nanoscale 7(33), 13958–13966 (2015)

    CAS  PubMed  Google Scholar 

  181. S. Palchetti et al., Influence of dynamic flow environment on nanoparticle-protein corona: from protein patterns to uptake in cancer cells. Colloids Surf. B Biointerfaces 153, 263–271 (2017)

    CAS  PubMed  Google Scholar 

  182. G. Caracciolo, O.C. Farokhzad, M. Mahmoudi, Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 35(3), 257–264 (2017)

    CAS  PubMed  Google Scholar 

  183. V. Forest, J. Pourchez, The nanoparticle protein corona: the myth of average. Nano Today 11(6), 700–703 (2016)

    CAS  Google Scholar 

  184. J. O’Brien, K.J. Shea, Tuning the protein corona of hydrogel nanoparticles: the synthesis of abiotic protein and peptide affinity reagents. Acc. Chem. Res. 49(6), 1200–1210 (2016)

    PubMed  Google Scholar 

  185. B.-J.L. Van Hong Nguyen, Protein corona: a new approach for nanomedicine design. Int. J. Nanomedicine 12, 3137 (2017)

    Google Scholar 

  186. S. Galmarini et al., Beyond unpredictability: the importance of reproducibility in understanding the protein corona of nanoparticles. Bioconjug. Chem. 29(10), 3385–3393 (2018)

    CAS  PubMed  Google Scholar 

  187. T.L. Moore et al., Nanoparticle administration method in cell culture alters particle-cell interaction. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  188. H.S. Leong et al., On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14(7), 629 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W. (2020). Protein Corona of Nanoparticles and Its Application in Drug Delivery. In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_9

Download citation

Publish with us

Policies and ethics