Skip to main content

Characterization of Chemical and Physical Modifications of Human Serum Albumin by Capillary Zone Electrophoresis

  • Protocol
  • First Online:
Capillary Electrophoresis of Proteins and Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1466))

  • 1393 Accesses

Abstract

Therapeutic proteins can easily undergo chemical or physical changes during their manufacturing, purification, and storage. These modifications might change or reduce their biological activity. Therefore, it is important to have analytical methodologies that are able to reliably detect, characterize, and quantify degradation products in formulations. Capillary Zone Electrophoresis (CZE) is very well suited for the analysis of proteins due to its relatively easiness of implementation, separation efficiency, and resolving power. We describe here a CZE method that allows separating more than nine forms in therapeutic albumin, including oxidized, glycated, and truncated forms. This method uses a polyethylene oxide (PEO) coating and a buffer composed of HEPES and SDS at physiological pH. The method is reproducible (RSD < 0.5 and 4 % for migration times and peak areas, respectively) and allows quantitation of albumin forms in pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taverna M, Marie AL, Mira JP, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3:1–7

    Article  Google Scholar 

  2. Marie AL, Przybylski C, Gonnet F, Daniel R, Urbain R, Chevreux G, Jorieux S, Taverna M (2013) Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin. Anal Chim Acta 800:103–110

    Article  CAS  PubMed  Google Scholar 

  3. Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P (2012) Structural modifications of human albumin in diabetes. Diabetes Metab 38:171–178

    Article  CAS  PubMed  Google Scholar 

  4. Oettl K, Marsche G (2010) Redox state of human serum albumin in terms of cysteine-34 in health and disease. Methods Enzymol 474:181–195

    Article  CAS  PubMed  Google Scholar 

  5. Fekete S, Beck A, Veuthey JL, Guillarme D (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101:161–173

    Article  CAS  PubMed  Google Scholar 

  6. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  PubMed  Google Scholar 

  7. Staub A, Guillarme D, Schappler J, Veuthey JL, Rudaz S (2011) Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 55:810–822

    Article  CAS  PubMed  Google Scholar 

  8. Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918

    Article  CAS  PubMed  Google Scholar 

  9. Guerini Rocco A, Mollica L, Ricchiuto P, Baptista AM, Gianazza E, Eberini I (2008) Characterization of the protein unfolding processes induced by urea and temperature. Biophys J 94:2241–2251

    Article  Google Scholar 

  10. Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 289:1–30

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien EP, Dima RI, Brooks B, Thirumalai D (2007) Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J Am Chem Soc 129:7346–7353

    Article  PubMed  Google Scholar 

  12. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  PubMed  Google Scholar 

  13. Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD (2013) Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry 52:3376–3389

    Article  CAS  PubMed  Google Scholar 

  14. Luan B, Shan B, Baiz C, Tokmakoff A, Raleigh DP (2013) Cooperative cold denaturation: the case of the C-terminal domain of ribosomal protein L9. Biochemistry 52:2402–2409

    Article  CAS  PubMed  Google Scholar 

  15. Harano Y, Yoshidome T, Kinoshita M (2008) Molecular mechanism of pressure denaturation of proteins. J Chem Phys 129:1–9

    Article  Google Scholar 

  16. Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595:235–249

    Article  CAS  PubMed  Google Scholar 

  17. Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:572–579

    Article  Google Scholar 

  18. Ratanji KD, Derrick JP, Dearman RJ, Kimber I (2014) Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol 11:99–109

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Ignatius AA, Thakkar SV (2014) Impact of residual impurities and contaminants on protein stability. J Pharm Sci 103:1315–1330

    Article  CAS  PubMed  Google Scholar 

  20. Kumar S, Zhou S, Singh SK (2014) Metal ion leachates and the physico-chemical stability of biotherapeutic drug products. Curr Pharm Des 20:1173–1181

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Yan Y, Seeman D, Sun L, Dubin PL (2012) Multimerization and aggregation of native-state insulin: effect of zinc. Langmuir 28:579–586

    Article  CAS  PubMed  Google Scholar 

  22. Pryor E, Kotarek JA, Moss MA, Hestekin CN (2011) Monitoring insulin aggregation via capillary electrophoresis. Int J Mol Sci 12:9369–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huntington JA, Sendall TJ, Yamasaki M (2009) New insight into serpin polymerization and aggregation. Prion 3:12–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamasaki M, Li W, Johnson DJD, Huntington JA (2008) Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455:1255–1259

    Article  CAS  PubMed  Google Scholar 

  25. Chalker JM, Bernardes GJL, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    Article  CAS  PubMed  Google Scholar 

  26. Levine RL, Moskovitz J, Stadtman ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301–307

    Article  CAS  PubMed  Google Scholar 

  27. Holzmann J, Hausberger A, Rupprechter A, Toll H (2013) Top-down MS for rapid methionine oxidation site assignment in filgrastim. Anal Bioanal Chem 405:6667–6674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taichrib A, Pelzing M, Pellegrino C, Rossi M, Neusüβ C (2011) High resolution TOF MS coupled to CE for the analysis of isotopically resolved intact proteins. J Proteom 74:958–966

    Article  CAS  Google Scholar 

  29. Santana H, González Y, Targon Campana P, Noda J, Amarantes O, Itri R, Beldarraín A, Páez R (2013) Screening for stability and compatibility conditions of recombinant human epidermal growth factor for parenteral formulation: effect of pH, buffers, and excipients. Int J Pharm 452:52–62

    Article  CAS  PubMed  Google Scholar 

  30. Haselberg R, Brinks V, Hawe A, De Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 400:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaïa N, Ionescu R, Beck A (2009) Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem 392:145–154

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YT, Hu J, Pace AL, Wong R, Wang YJ, Kao YH (2014) Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. J Chromatogr B 965:65–71

    Article  CAS  Google Scholar 

  33. Zhang J, Yip H, Katta V (2011) Identification of isomerization and racemization of aspartate in the Asp–Asp motifs of a therapeutic protein. Anal Biochem 410:234–243

    Article  CAS  PubMed  Google Scholar 

  34. Vlasak J, Ionescu R (2011) Fragmentation of monoclonal antibodies. mAbs 3:253–263

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cordoba AJ, Shyong BJ, Breen D, Harris RJ (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B 818:115–121

    Article  CAS  Google Scholar 

  36. Gaza-Bulseco G, Liu H (2008) Fragmentation of a recombinant monoclonal antibody at various pH. Pharm Res 25:1881–1890

    Article  CAS  PubMed  Google Scholar 

  37. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27

    Article  CAS  PubMed  Google Scholar 

  38. Fischer S, Hoernschemeyer J, Mahler HC (2008) Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Biopharm 70:42–50

    Article  CAS  PubMed  Google Scholar 

  39. Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, Dillon T, Ricci M, Treuheit M (2007) The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci 96:2607–2621

    Article  CAS  PubMed  Google Scholar 

  40. Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79:5991–5999

    Article  CAS  PubMed  Google Scholar 

  41. Mulinacci F, Poirier E, Capelle MAH, Gurny R, Arvinte T (2013) Influence of methionine oxidation on the aggregation of recombinant human growth hormone. Eur J Pharm Biopharm 85:42–52

    Article  CAS  PubMed  Google Scholar 

  42. Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47:5088–5100

    Article  CAS  PubMed  Google Scholar 

  43. Wetzel R, Becker M, Behlke J, Billwitz H, Böhm S, Ebert B, Hamann H, Krumbiegel J, Lassmann G (1980) Temperature behaviour of human serum albumin. Eur J Biochem 104:469–478

    Article  CAS  PubMed  Google Scholar 

  44. Lin JJ, Meyer JD, Carpenter JF, Manning MC (2000) Stability of human serum albumin during bioprocessing: denaturation and aggregation during processing of albumin paste. Pharm Res 17:391–396

    Article  CAS  PubMed  Google Scholar 

  45. Vetri V, Librizzi F, Leone M, Militello V (2007) Thermal aggregation of bovine serum albumin at different pH: comparison with human serum albumin. Eur Biophys J 36:717–725

    Article  CAS  PubMed  Google Scholar 

  46. Alahmad Y, Tran NT, Le Potier I, Forest E, Jorieux S, Taverna M (2011) A new CZE method for profiling human serum albumin and its related forms to assess the quality of biopharmaceuticals. Electrophoresis 32:292–299

    Article  CAS  PubMed  Google Scholar 

  47. Ogasawara Y, Namai T, Togawa T, Ishii K (2006) Formation of albumin dimers induced by exposure to peroxides in human plasma: a possible biomarker for oxidative stress. Biochem Biophys Res Comm 340:353–358

    Article  CAS  PubMed  Google Scholar 

  48. Oliva A, Santoveña A, Llabres M, Fariña JB (1999) Stability study of human serum albumin pharmaceutical preparations. J Pharm Pharmacol 51:385–392

    Article  CAS  PubMed  Google Scholar 

  49. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  CAS  PubMed  Google Scholar 

  50. Bar-Or D, Bar-Or R, Rael LT, Gardner DK, Slone DS, Craun ML (2005) Heterogeneity and oxidation status of commercial human albumin preparations in clinical use. Crit Care Med 33:1638–1641

    Article  CAS  PubMed  Google Scholar 

  51. Bar-Or D, Rael LT, Bar-Or R, Slone DS, Craun ML (2006) The formation and rapid clearance of a truncated albumin species in a critically ill patient. Clin Chim Acta 365:346–349

    Article  CAS  PubMed  Google Scholar 

  52. Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, Suzuki E, Hirayama K (2006) Identification and characterization of oxidized human serum albumin: a slight structural change impairs its ligand-binding and antioxidant functions. FEBS J 273:3346–3357

    Article  CAS  PubMed  Google Scholar 

  53. Oettl K, Stauber RE (2007) Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 151:580–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naldi M, Giannone FA, Baldassarre M, Domenicali M, Caraceni P, Bernardi M, Bertucci C (2013) A fast and validated mass spectrometry method for the evaluation of human serum albumin structural modifications in the clinical field. Eur J Mass Spectrom 19:491–496

    Article  CAS  Google Scholar 

  55. Ishima Y, Hiroyama S, Kragh-Hansen U, Maruyama T, Sawa T, Akaike T, Kai T, Otagiri M (2010) One-step preparation of S-nitrosated human serum albumin with high biological activities. Nitric Oxide 23:121–127

    Article  CAS  PubMed  Google Scholar 

  56. Turell L, Carballal S, Botti H, Radi R, Alvarez B (2009) Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Braz J Med Biol Res 42:305–311

    Article  CAS  PubMed  Google Scholar 

  57. Turell L, Botti H, Bonilla L, Torres MJ, Schopfer F, Freeman BA, Armas L, Ricciardi A, Alvarez B, Radi R (2014) HPLC separation of human serum albumin isoforms based on their isoelectric points. J Chromatogr B Analyt Technol Biomed Life Sci 944:144–151

    Article  CAS  PubMed  Google Scholar 

  58. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76

    Article  CAS  PubMed  Google Scholar 

  59. Rondeau P, Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93:645–658

    Article  CAS  PubMed  Google Scholar 

  60. Wa C, Cerny RL, Clarke WA, Hage DS (2007) Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 385:48–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmed N, Argirov OK, Minhas HS, Cordeiro CAA, Thornalley PJ (2002) Assay of advanced glycation end products (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to N ε -carboxymethyl-lysine- and N ε -(1-carboxyethyl)lysine-modified albumin. Biochem J 364:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by LFB Biotechnologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Taverna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marie, AL., Tran, N.T., Taverna, M. (2016). Characterization of Chemical and Physical Modifications of Human Serum Albumin by Capillary Zone Electrophoresis. In: Tran, N., Taverna, M. (eds) Capillary Electrophoresis of Proteins and Peptides. Methods in Molecular Biology, vol 1466. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4014-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4014-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4012-7

  • Online ISBN: 978-1-4939-4014-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics