Skip to main content
Log in

High-throughput data on circular RNA reveal novel insights into chronic glomerulonephritis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs), a unique novel type of RNA, have been widely reported to be involved in physiologic and pathologic processes in humans. However, the exact molecular pathogenesis of circRNAs in chronic glomerulonephritis (CGN) is far from clear.

Objective

This paper aims to evaluate the specific expression profile of circRNAs in renal cortex tissues from Adriamycin-induced CGN rats.

Methods

CircRNAs were screened in renal cortex tissues from 3 CGN rats and 3 control rats by using high-throughput sequencing (HTS). Then, 4 circRNAs were selected randomly for verification by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the differentially expressed (DE) circRNAs were analyzed by bioinformatics methods.

Results

In total, 31 significantly DE circRNAs were identified, which revealed their potential roles in CGN; in particular, we found that 4 confirmed altered circRNAs (rno-circ-RNAs 689, 3217, 1327, and 5001) might play important roles in the development of CGN.

Conclusion

This study reveals a cluster of circRNAs that are DE in Adriamycin-induced CGN rats, which brings us closer to understanding the pathogenic mechanisms and may provide new potential targets for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data of RNA-seq reads were deposited in the National Center for Biotechnology Information (NCBI) database under accession number (PRJNA573556). Biosample accessions were as follows: SAMN12816948-SAMN12816953.

References

  • Alhazmi A (2018) NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 67:479–493

    Article  CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–153

    Article  CAS  PubMed  Google Scholar 

  • Cadena C, Hur S (2017) Antiviral immunity and circular RNA: no end in sight. Mol Cell 67:163–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR, Meldrum KK (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69

    Article  CAS  PubMed  Google Scholar 

  • Carneiro LA, Travassos LH, Girardin SE (2007) Nod-like receptors in innate immunity and inflammatory diseases. Ann Med 39:581–593

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Yan W, Sun C, Liu Q, Wang J, Wang M (2017) miR-145-5p inhibits epithelial–mesenchymal transition via the JNK signaling pathway by targeting MAP3K1 in non-small cell lung cancer cells. Oncol Lett 14:6923–6928

    PubMed  PubMed Central  Google Scholar 

  • De Boer E, Navis G, Tiebosch AT, De Jong PE, De Zeeuw D (1999) Systemic factors are involved in the pathogenesis of proteinuria-induced glomerulosclerosis in adriamycin nephrotic rats. J Am Soc Nephrol 10:2359–2366

    Article  PubMed  Google Scholar 

  • Deng W, Chen K, Liu S, Wang Y (2019) Silencing circular ANRIL protects HK-2 cells from lipopolysaccharide-induced inflammatory injury through up-regulating microRNA-9. Artif Cells Nanomed Biotechnol 47:3478–3484

    Article  CAS  PubMed  Google Scholar 

  • Egger C, Cannet C, Gérard C, Debon C, Stohler N, Dunbar A, Tigani B, Li J, Beckmann N (2015) Adriamycin-induced nephropathy in rats: functional and cellular effects characterized by MRI. J Magn Reson Imaging 41:829–840

    Article  PubMed  Google Scholar 

  • Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JR, Qin XJ, Jiang H, Wang T, Song JM, Xu SZ (2016) Screening and functional analysis of differentially expressed genes in chronic glomerulonephritis by whole genome microarray. Gene 589:72–80

    Article  CAS  PubMed  Google Scholar 

  • Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G et al (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig 121:2197–2209

    Article  PubMed  PubMed Central  Google Scholar 

  • Guess AJ, Ayoob R, Chanley M, Manley J, Cajaiba MM, Agrawal S, Pengal R, Pyle AL, Becknell B, Kopp JB et al (2013) Crucial roles of the protein kinases MK2 and MK3 in a mouse model of glomerulonephritis. PLoS One 8:e54239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Györfi AH, Matei AE, Distler JHW (2018) Targeting TGF-beta signaling for the treatment of fibrosis. Matrix Biol 68–69:8–27

    Article  PubMed  Google Scholar 

  • Hinrichs K, Gensch M, Esser N, Schade U, Rappich J, Kröning S, Portwich M, Volkmer R (2007) Analysis of biosensors by chemically specific optical techniques. Chemiluminescence-imaging and infrared spectroscopic mapping ellipsometry. Anal Bioanal Chem 387:1823–1829

    Article  CAS  PubMed  Google Scholar 

  • Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75:1071–1098

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tong J, He F, Yu X, Fan L, Hu J, Tan J, Chen Z (2015) miR-141 regulates TGF-beta1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med 35:311–318

    Article  CAS  PubMed  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BG, Dang LT, Marsh G, Roach AM, Levine ZG, Monti A, Reyon D, Feigenbaum L, Duffield JS (2017) Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Investig 127:3954–3969

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamyshova ES, Bobkova IN (2017) MicroRNAs in chronic glomerulonephritis: promising biomarkers for diagnosis and prognosis estimation. Ter Arkh 89:89–96

    Article  CAS  PubMed  Google Scholar 

  • Kramann R, Dirocco DP, Maarouf OH, Humphreys BD (2013) Matrix producing cells in chronic kidney disease: origin, regulation, and activation. Curr Pathobiol Rep. https://doi.org/10.1007/s40139-013-0026-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang BJ, Holton KM, Gong J, Calderwood SK (2018) A workflow guide to RNA-seq analysis of chaperone function and beyond. Methods Mol Bio 1709:233–252

    Article  CAS  Google Scholar 

  • Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton) 16:30–38

    Article  PubMed  Google Scholar 

  • Lee SY, Lee YS, Choi HM, Ko YS, Lee HY, Jo SK, Cho WY, Kim HK (2012) Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 40:2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, Xu D, Lin HK, Gong Z (2015a) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5:472–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015b) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Hao X, Wang H, Liu Z, He Y, Pu M, Zhang H, Yu H, Duan J, Qu S (2016) Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cell Physiol Biochem 40:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Li L, Guo J, Chen Y, Chang C, Xu C (2017) Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genom 18:80

    Article  Google Scholar 

  • Li X, Li Y, Shen K, Li H, Bai J (2019) The protective effect of ticagrelor on renal function in a mouse model of sepsis-induced acute kidney injury. Platelets 30:199–205

    Article  CAS  PubMed  Google Scholar 

  • Li G, Qin Y, Qin S, Zhou X, Zhao W, Zhang D (2020) Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells. Life Sci 259:118269

    Article  CAS  PubMed  Google Scholar 

  • Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7:1566–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litovkina O, Nekipelova E, Dvornyk V, Polonikov A, Efremova O, Zhernakova N, Reshetnikov E, Churnosov M (2014) Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulonephritis. Gene 546:112–116

    Article  CAS  PubMed  Google Scholar 

  • Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J, Shi ZZ (2017) miR-145-5p suppresses tumor cell migration, invasion and epithelial to mesenchymal transition by regulating the Sp1/NF-kappaB signaling pathway in esophageal squamous cell carcinoma. Int J Mol Sci 18:1833

    Article  PubMed  PubMed Central  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Q, Wu J, Jiang Z, Zhao J, Wang R, Lou A, Zhu D, Shi GP, Yang M (2017) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 42:651–659

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP (2015) miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 15:361–374

    Article  CAS  PubMed  Google Scholar 

  • Pei WY, Yang CH, Zhang XL (2016) Effects and mechanism of Tripterygium wilfordii on chronic glomerulo nephritis. Genet Mol Res 15:1–7

    Article  CAS  Google Scholar 

  • Prakoura N, Chatziantoniou C (2017) Cell Mol Life Sci 74:4315–4320

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8:73271–73281

    Article  PubMed  PubMed Central  Google Scholar 

  • Schell C, Rogg M, Suhm M, Helmstädter M, Sellung D, Yasuda-Yamahara M, Kretz O, Küttner V, Suleiman H, Kollipara L et al (2017) The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier. Proc Natl Acad Sci USA 114:E4621–E4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Imaizumi T (2013) Inflammatory chemokine expression via Toll-like receptor 3 signaling in normal human mesangial cells. Clin Dev Immunol 2013:984708

    Article  PubMed  PubMed Central  Google Scholar 

  • Trionfini P, Benigni A (2017) MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol 28:1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vervier K, Mahé P, Vert JP (2018) MetaVW: large-scale machine learning for metagenomics sequence classification. Methods Mol Biol 1807:9–20

    Article  PubMed  Google Scholar 

  • Wei R, Gao B, Shih F, Ranger A, Dearth A, Mischak H, Siwy J, Wisniacki N, Petri M, Burkly LC (2017) Alterations in urinary collagen peptides in lupus nephritis subjects correlate with renal dysfunction and renal histopathology. Nephrol Dial Transplant 32:1468–1477

    Article  PubMed  Google Scholar 

  • Wu HJ, Zhang CY, Zhang S, Chang M, Wang HY (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39:205–216

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Jin L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39:454–459

    Article  CAS  PubMed  Google Scholar 

  • Wu J, He Y, Luo Y, Zhang L, Lin H, Liu X, Liu B, Liang C, Zhou Y, Zhou J (2018) MiR-145-5p inhibits proliferation and inflammatory responses of RMC through regulating AKT/GSK pathway by targeting CXCL16. J Cell Physiol 233:3648–3659

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial–mesenchymal transition. Autophagy 14:1–70

    Article  Google Scholar 

  • Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110:304–315

    Article  CAS  PubMed  Google Scholar 

  • Yasuda-Yamahara M, Rogg M, Frimmel J, Trachte P, Helmstaedter M, Schroder P, Schiffer M, Schell C, Huber TB (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 68–69:263–279

    Article  PubMed  Google Scholar 

  • Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X, Zhu J (2017) Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer 16:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Li L, Wang Q, Han H, Zhan Q, Xu M (2017) CircRNA expression profile in early-stage lung adenocarcinoma patients. Cell Physiol Biochem 44:2138–2146

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Luo G, Fan Y, Ma X, Zhou J, Jiang H (2018) ILEI is an important intermediate participating in the formation of TGF-beta1-induced renal tubular EMT. Cell Biochem Funct 36:46–55

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L, Chen J (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Du D, Chen A, Zhu L (2018) Circular RNA expression profile of articular chondrocytes in an IL-1beta-induced mouse model of osteoarthritis. Gene 644:20–26

    Article  CAS  PubMed  Google Scholar 

  • Zschiedrich S, Bork T, Liang W, Wanner N, Eulenbruch K, Munder S, Hartleben B, Kretz O, Gerber S, Simons M et al (2017) Targeting mTOR signaling can prevent the progression of FSGS. J Am Soc Nephrol 28:2144–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC, Grant no. 81973546) and the Natural Science Foundation of Anhui province (no. 1908085QH343).

Author information

Authors and Affiliations

Authors

Contributions

JG conceived and designed the study. YG wrote the paper. NJ and XQ performed the experiments. HJ and LW reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jia-rong Gao.

Ethics declarations

Conflict of interest

Jia-rong Gao, Ya-chen Gao, Nan-nan Jiang, Xiu-juan Qin, Hui Jiang, and Liang-bing Wei declare that they have no conflict of interest.

Ethical approval

The animal protocol was approved by the Committee on the Ethics of Animal Experiments of Anhui University of Chinese medicine, and experimental procedures were carried out in accordance with their guidelines and regulations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Yc., Jiang, Nn., Qin, Xj. et al. High-throughput data on circular RNA reveal novel insights into chronic glomerulonephritis. Genes Genom 45, 475–490 (2023). https://doi.org/10.1007/s13258-022-01320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-022-01320-2

Keywords

Navigation