Skip to main content
Log in

Antimicrobial curcumin nanoparticles downregulate joint inflammation and improve osteoarthritis

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is characterized by degenerative lesions in articular cartilage and becomes increasingly difficult to treat as the inflammatory response progresses and damage to joint cartilage occurs. Therefore, novel therapeutic options are required. In this study, curcumin (Cur) nanoparticles (Cur@Zn&TA) were prepared using a metal–phenol network based on Zn2+ ions and tannic acid (TA). The poor bioavailability of Cur, caused by low and rapid metabolism, was resolved by metal–phenol network wrapping, thus prolonging the time of action of the drug. This composite nanostructure has several biological effects, including anti-inflammatory, antibacterial, and chondroprotective, which are ideal for treating OA. Animal tests indicated that Cur@Zn&TA nanoparticles can be directly injected into the joint cavity to regulate the inflammatory response of OA, effectively promoting OA repair and preventing bacterial infections to achieve rapid and long-term treatment of OA.

Graphical abstract

Antimicrobial curcumin nanoparticles were developed to improve osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. F. Motta et al., Clin Rev Allergy Immunol 64, 222 (2023)

    Article  CAS  PubMed  Google Scholar 

  2. R. Barnett, Lancet 391, 1985 (2018)

    Article  PubMed  Google Scholar 

  3. L. Yang et al., ACS Nano 15, 20600 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. J.G. Quicke et al., Osteoarthr Cartil 30, 196 (2022)

    Article  CAS  Google Scholar 

  5. B. Abramoff, F.E. Caldera, Med Clin North Am 104, 293 (2020)

    Article  PubMed  Google Scholar 

  6. L.M. March et al., Med J Aust 171, 235 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. A.D. Liddle, E.C. Pegg, H. Pandit, Maturitas 75, 131 (2013)

    Article  PubMed  Google Scholar 

  8. Y. Lei et al., Smart Med 1, e20220014 (2022)

    Article  Google Scholar 

  9. A. Giordano, G. Tommonaro, Nutrients 11, 2376 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Li et al., Biotechnol Adv 38, 107343 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. L. Wang, C. He, Front Immunol 13, 967193 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Z. Zhang et al., Arthritis Res Ther 18, 128 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  13. C. Buhrmann et al., Int J Mol Sci 22, 7645 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. Guan et al., Front Pharmacol 13, 882304 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Zhou et al., J Mol Med (Berl) 98, 1479 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. G. Han, Y. Zhang, H. Li, Oxid Med Cell Longev 2021, 5558066 (2021)

    PubMed  PubMed Central  Google Scholar 

  17. Q. Sun et al., Front Bioeng Biotechnol 10, 994816 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  18. R. Zhang et al., Cell Transplant 30, 963689721993776 (2021)

    PubMed  Google Scholar 

  19. P. Anand et al., Mol Pharm 4, 807 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. L. Lei et al., Gels 8, 301 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Su et al., Int J Biol Macromol 227, 472 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. Z. He et al., Coll Surf B Biointerfaces 154, 33 (2017)

    Article  CAS  Google Scholar 

  23. S. Zeng et al., Mater Today Bio 20, 100633 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H.S. Kim et al., Adv Drug Deliv Rev 146, 209 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. L. Mao et al., Drug Deliv 28, 1861 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G.Z. Jin, Nanomaterials (Basel) 10, 2368 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Z. Ma et al., J Control Release 316, 359 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. X. Yi et al., Nano Res. 15, 1205 (2022)

    Article  CAS  Google Scholar 

  29. Z. Cheng et al., J Hematol Oncol 14, 85 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  30. W. Jing et al., Biomed Pharmacother 154, 113561 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. Z. Zhou et al., Carbohydr Polym 285, 119235 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. D. Staneva et al., Macromol. Res. 26, 332 (2018)

    Article  CAS  Google Scholar 

  33. Z. Guo et al., J Mater Chem B 9, 4098 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. K. Halake et al., Macromol. Res. 26, 93 (2018)

    Article  CAS  Google Scholar 

  35. Z. Han et al., Biomaterials 285, 121545 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. K.P. Pritzker et al., Osteoarthr Cartil 14, 13 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Zhejiang Provincial Natural Science Foundation of China (No. LGF19H180007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guojing Yang or Liangle Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Jiang, S., Ye, X. et al. Antimicrobial curcumin nanoparticles downregulate joint inflammation and improve osteoarthritis. Macromol. Res. 31, 1179–1187 (2023). https://doi.org/10.1007/s13233-023-00196-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00196-9

Keywords

Navigation