Skip to main content

Advertisement

Log in

Chemically modified curcumin (CMC2.24) alleviates osteoarthritis progression by restoring cartilage homeostasis and inhibiting chondrocyte apoptosis via the NF-κB/HIF-2α axis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The disorders of cartilage homeostasis and chondrocyte apoptosis are major events in the pathogenesis of osteoarthritis (OA). Herein, we aim to assess the chondroprotective effect and underlying mechanisms of a novel chemically modified curcumin, CMC2.24, in modulating extracellular matrix (ECM) homeostasis and inhibiting chondrocyte apoptosis. Rats underwent the anterior cruciate ligament transection, and medial menisci resection was treated by intra-articular injection with CMC2.24. In an in vitro study, rat chondrocytes were pretreated with CMC2.24 before stimulation with sodium nitroprusside (SNP). Results from in vivo studies demonstrated that the intra-articular administration of CMC2.24 ameliorated osteoarthritic cartilage destruction by promoting collagen 2a1 production and inhibited cartilage degradation and apoptosis by suppressing hypoxia-inducible factor-2a (Hif-2α), matrix metalloproteinase-3, runt-related transcription factor 2, cleaved caspase-3, and vascular endothelial growth factor and the phosphorylation of IκBα and NF-κB p65. The in vitro results revealed that CMC2.24 exhibited a strong inhibitory effect on SNP-induced chondrocyte catabolism and apoptosis. The SNP-enhanced expression of Hif-2α, a catabolic and apoptotic factor, decreased in a dose-dependent manner after CMC2.24 treatment. CMC2.24 pretreatment effectively inhibited SNP-induced IκBα and NF-κB p65 phosphorylation in rat chondrocytes, whereas pretreatment with the NF-κB antagonist BMS-345541 significantly enhanced the effects of CMC2.24. Overall, these results demonstrated that CMC2.24 attenuates OA progression by modulating ECM homeostasis and chondrocyte apoptosis by suppressing the NF-κB/Hif-2α axis, thus providing a new perspective for therapeutic strategies in OA.

Key messages

• Intra-articular injection of CMC2.24 ameliorated osteoarthritic cartilage destruction.

• CMC2.24 promoted cell viability and decreased SNP-induced apoptotic gene expression.

• SNP-induced activation of Hif-2α is inhibited by CMC2.24.

• CMC2.24 inhibits NF-κB/Hif-2α axis activation to modulate ECM homeostasis and inhibit chondrocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi WS, Yang JI, Kim W, Kim HE, Kim SK, Won Y, Son YO, Chun CH, Chun JS (2019) Critical role for arginase II in osteoarthritis pathogenesis. Ann Rheum Dis 78:421–428

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71-72:40–50

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kraus VB, Simon LS, Katz JN, Neogi T, Hunter D, Guermazi A, Karsdal MA (2019) Proposed study designs for approval based on a surrogate endpoint and a post-marketing confirmatory study under FDA's accelerated approval regulations for disease modifying osteoarthritis drugs. Osteoarthr Cartil 27:571–579

    CAS  PubMed  Google Scholar 

  4. Geyer M, Schonfeld C (2018) Novel insights into the pathogenesis of osteoarthritis. Curr Rheumatol Rev 14:98–107

    CAS  PubMed  Google Scholar 

  5. Hu G, Zhao X, Wang C, Geng Y, Zhao J, Xu J, Zuo B, Zhao C, Wang C, Zhang X (2017) MicroRNA-145 attenuates TNF-alpha-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis 8:e3140

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang CY, Chanalaris A, Troeberg L (2017) ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the ‘usual suspects’. Osteoarthr Cartil 25:1000–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet 393:1745–1759

    CAS  PubMed  Google Scholar 

  8. Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16:26035–26054

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Musumeci G, Castrogiovanni P, Trovato FM, Weinberg AM, Al-Wasiyah MK, Alqahtani MH, Mobasheri A (2015) Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int J Mol Sci 16:20560–20575

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirata M, Kugimiya F, Fukai A, Saito T, Yano F, Ikeda T, Mabuchi A, Sapkota BR, Akune T, Nishida N, Yoshimura N, Nakagawa T, Tokunaga K, Nakamura K, Chung UI, Kawaguchi H (2012) C/EBPbeta and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2alpha as the inducer in chondrocytes. Hum Mol Genet 21:1111–1123

    CAS  PubMed  Google Scholar 

  11. Inoue H, Arai Y, Kishida T, Terauchi R, Honjo K, Nakagawa S, Tsuchida S, Matsuki T, Ueshima K, Fujiwara H, Mazda O, Kubo T (2015) Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes. Int J Mol Sci 16:1043–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Murahashi Y, Yano F, Kobayashi H, Makii Y, Iba K, Yamashita T, Tanaka S, Saito T (2018) Intra-articular administration of IkappaBalpha kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-kappaB/HIF-2alpha axis. Sci Rep 8:16475

    PubMed  PubMed Central  Google Scholar 

  13. Choi MC, Choi WH (2018) Mithramycin a alleviates osteoarthritic cartilage destruction by inhibiting HIF-2alpha expression. Int J Mol Sci 19:1411

    PubMed Central  Google Scholar 

  14. Lepetsos P, Papavassiliou KA, Papavassiliou AG (2019) Redox and NF-kappaB signaling in osteoarthritis. Free Radic Biol Med 132:90–100

    CAS  PubMed  Google Scholar 

  15. Kobayashi H, Chang SH, Mori D, Itoh S, Hirata M, Hosaka Y, Taniguchi Y, Okada K, Mori Y, Yano F, Chung UI, Akiyama H, Kawaguchi H, Tanaka S, Saito T (2016) Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes. Nat Commun 7:13336

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh H, Kwak JS, Yang S, Gong MK, Kim JH, Rhee J, Kim SK, Kim HE, Ryu JH, Chun JS (2015) Reciprocal regulation by hypoxia-inducible factor-2alpha and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis. Osteoarthr Cartil 23:2288–2296

    CAS  PubMed  Google Scholar 

  17. Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung UI, Kawaguchi H (2010) Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med 16:678–686

    CAS  PubMed  Google Scholar 

  18. Golub LM, Lee HM (2020) Periodontal therapeutics: current host-modulation agents and future directions. Periodontol 82:186–204

    Google Scholar 

  19. Deng J, Golub LM, Lee HM, Lin MC, Bhatt HD, Hong HL, Johnson F, Scaduto J, Zimmerman T, Gu Y (2020) Chemically-modified curcumin 2.24: a novel systemic therapy for natural periodontitis in dogs. J Exp Pharmacol 12:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang HH, Lee HM, Raja V, Hou W, Iacono VJ, Scaduto J, Johnson F, Golub LM, Gu Y (2019) Enhanced efficacy of chemically modified curcumin in experimental periodontitis: systemic implications. J Exp Pharmacol 11:1–14

    PubMed  PubMed Central  Google Scholar 

  21. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A (2017) Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother 85:102–112

    CAS  PubMed  Google Scholar 

  22. Arshad L, Haque MA, Abbas Bukhari SN, Jantan I (2017) An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 9:605–626

    CAS  PubMed  Google Scholar 

  23. Moon DO, Kim MO, Choi YH, Park YM, Kim GY (2010) Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol 10:605–610

    CAS  PubMed  Google Scholar 

  24. Xu Y, Ge L, Abdel-Razek O, Jain S, Liu Z, Hong Y, Nieman G, Johnson F, Golub LM, Cooney RN, Wang G (2016) Differential susceptibility of human SP-b genetic variants on lung injury caused by bacterial pneumonia and the effect of a chemically modified CURCUMIN. Shock 45:375–384

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Gu Y, Lee HM, Hambardjieva E, Vrankova K, Golub LM, Johnson F (2012) Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Curr Med Chem 19:4348–4358

    CAS  PubMed  Google Scholar 

  26. Zhang Y, Golub LM, Johnson F, Wishnia A (2012) pKa, zinc- and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Curr Med Chem 19:4367–4375

    CAS  PubMed  Google Scholar 

  27. Antonelli AC, Zhang Y, Golub LM, Johnson F, Simon SR (2014) Inhibition of anthrax lethal factor by curcumin and chemically modified curcumin derivatives. J Enzyme Inhib Med Chem 29:663–669

    CAS  PubMed  Google Scholar 

  28. Coury JR, Nixon R, Collins M, Schwartz J, Chahine NO, Grande DA (2018) Oral administration of a chemically modified curcumin, TRB-N0224, reduced inflammatory cytokines and cartilage erosion in a rabbit ACL transection injury model. Cartilage:1947603518815263. https://doi.org/10.1177/1947603518815263

  29. Zhou Y, Liu SQ, Yu L, He B, Wu SH, Zhao Q, Xia SQ, Mei HJ (2015) Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis 20:1187–1199

    CAS  PubMed  Google Scholar 

  30. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243

    Google Scholar 

  31. Son YO, Park S, Kwak JS, Won Y, Choi WS, Rhee J, Chun CH, Ryu JH, Kim DK, Choi HS, Chun JS (2017) Estrogen-related receptor gamma causes osteoarthritis by upregulating extracellular matrix-degrading enzymes. Nat Commun 8:2133

    PubMed  PubMed Central  Google Scholar 

  32. Alshenibr W, Tashkandi MM, Alsaqer SF, Alkheriji Y, Wise A, Fulzele S, Mehra P, Goldring MB, Gerstenfeld LC, Bais MV (2017) Anabolic role of lysyl oxidase like-2 in cartilage of knee and temporomandibular joints with osteoarthritis. Arthritis Res Ther 19:179

    PubMed  PubMed Central  Google Scholar 

  33. Jeon J, Kang LJ, Lee KM, Cho C, Song EK, Kim W, Park TJ, Yang S (2018) 3'-Sialyllactose protects against osteoarthritic development by facilitating cartilage homeostasis. J Cell Mol Med 22:57–66

    CAS  PubMed  Google Scholar 

  34. Zhou S, Lu W, Chen L, Ge Q, Chen D, Xu Z, Shi D, Dai J, Li J, Ju H, Cao Y, Qin J, Chen S, Teng H, Jiang Q (2017) AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Sci Rep 7:43245

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tu C, Ma Y, Song M, Yan J, Xiao Y, Wu H (2019) Liquiritigenin inhibits IL-1beta-induced inflammation and cartilage matrix degradation in rat chondrocytes. Eur J Pharmacol 858:172445

    CAS  PubMed  Google Scholar 

  36. Cheleschi S, Fioravanti A, De Palma A, Corallo C, Franci D, Volpi N, Bedogni G, Giannotti S, Giordano N (2018) Methylsulfonylmethane and mobilee prevent negative effect of IL-1beta in human chondrocyte cultures via NF-kappaB signaling pathway. Int Immunopharmacol 65:129–139

    CAS  PubMed  Google Scholar 

  37. Ashraf S, Mapp PI, Shahtaheri SM, Walsh DA (2018) Effects of carrageenan induced synovitis on joint damage and pain in a rat model of knee osteoarthritis. Osteoarthr Cartil 26:1369–1378

    CAS  PubMed  Google Scholar 

  38. Singh P, Marcu KB, Goldring MB, Otero M (2019) Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 1442:17–34

    CAS  PubMed  Google Scholar 

  39. Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS (2015) NAMPT (visfatin), a direct target of hypoxia-inducible factor-2alpha, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis 74:595–602

    CAS  PubMed  Google Scholar 

  40. Zhang FJ, Luo W, Lei GH (2015) Role of HIF-1alpha and HIF-2alpha in osteoarthritis. Joint Bone Spine 82:144–147

    CAS  PubMed  Google Scholar 

  41. Thoms BL, Dudek KA, Lafont JE, Murphy CL (2013) Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum 65:1302–1312

    CAS  PubMed  Google Scholar 

  42. Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T (2013) Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil 21:165–174

    CAS  PubMed  Google Scholar 

  43. Saito T, Kawaguchi H (2010) HIF-2alpha as a possible therapeutic target of osteoarthritis. Osteoarthr Cartil 18:1552–1556

    CAS  PubMed  Google Scholar 

  44. Ishizuka S, Sakai T, Hiraiwa H, Hamada T, Knudson W, Omachi T, Ono Y, Nakashima M, Matsukawa T, Oda T, Takamatsu A, Yamashita S, Ishiguro N (2016) Hypoxia-inducible factor-2alpha induces expression of type X collagen and matrix metalloproteinases 13 in osteoarthritic meniscal cells. Inflamm Res 65:439–448

    CAS  PubMed  Google Scholar 

  45. Zhao P, Cheng J, Geng J, Yang M, Zhang Y, Zhang Q, Wang Y, Lu B (2018) Curcumin protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Eur J Pharmacol 828:146–153

    CAS  PubMed  Google Scholar 

  46. Li X, Feng K, Li J, Yu D, Fan Q, Tang T, Yao X, Wang X (2017) Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy. Nutrients 9:414

    PubMed Central  Google Scholar 

  47. Chin KY (2016) The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des Devel Ther 10:3029–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Henrotin Y, Clutterbuck AL, Allaway D, Lodwig EM, Harris P, Mathy-Hartert M, Shakibaei M, Mobasheri A (2010) Biological actions of curcumin on articular chondrocytes. Osteoarthr Cartil 18:141–149

    CAS  PubMed  Google Scholar 

  49. Pi Y, Zhang X, Shao Z, Zhao F, Hu X, Ao Y (2015) Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther 22:439–448

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Francis Johnson in the Department of Pharmacological Science, the SUNY at Stone Brook, New York, for kindly providing CMC2.24 component.

Funding

This project was funded by National Natural Science Foundation of China (grant number: 81802203), Fundamental Research Funds for the Central Universities (grant number: 2042018kf0123), Guiding Fund of Renmin Hospital of Wuhan University (grant number: RMYD2018M43), NIH R01HL (grant number:136706), and NSF research award (grant number: 1722630).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guirong Wang or Shiqing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Animal Care and Use Committee of Medical School, Wuhan University. All of the protocols were approved by the Institutional Ethics Committee of Medical School, Wuhan University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ming, J., Deng, M. et al. Chemically modified curcumin (CMC2.24) alleviates osteoarthritis progression by restoring cartilage homeostasis and inhibiting chondrocyte apoptosis via the NF-κB/HIF-2α axis. J Mol Med 98, 1479–1491 (2020). https://doi.org/10.1007/s00109-020-01972-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01972-1

Keywords

Navigation