Skip to main content
Log in

Graphene Oxide-Mediated Fluorometric Aptasensor for Okadaic Acid Detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Okadaic acid (OA), which is one of the representative diarrhetic shellfish poisonings, is a prevalent food-poisoning toxin in the world. As OA consumption induces various digestive diseases, a strict monitoring tool for OA is highly required. In this study, we demonstrate the development of an aptamer-based fluorometric OA sensor. First, the affinity of the aptamer towards OA was confirmed through electrochemical impedance spectroscopy, and it was then utilized to develop the fluorometric sensor. The verified OA-specific aptamer was modified with 5-carboxyfluorescein (FAM) as a fluorophore, and graphene oxide (GO) was adopted as the quencher. By virtue of the quenching phenomena between FAM and GO, the developed sensor revealed a low detection limit of 6.35 ppb. Also, this sensor represented a high response to OA compared to other types of marine toxins, such as saxitoxin, domoic acid, and tetrodotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berdalet, E., Fleming, L.E., Gowen, R., Davidson, K., Hess, P., et al.: Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biolog. Assoc. U.K. 96, 61–91 (2016)

    Article  Google Scholar 

  2. Wexler, P., Anderson, B.D., Gad, S.C., Hakkinen, P.B., Kamrin, M., et al.: Encyclopedia of toxicology. Academic Press (2005)

    Google Scholar 

  3. García-Altares, M., Diogène, J., De La Iglesia, P.: The implementation of liquid chromatography tandem mass spectrometry for the official control of lipophilic toxins in seafood: single-laboratory validation under four chromatographic conditions. J. Chromatogr. A 1275, 48–60 (2013)

    Article  Google Scholar 

  4. Fu, L.-L., Zhao, X.-Y., Ji, L.-D., Xu, J.: Okadaic acid (OA): toxicity, detection and detoxification. Toxicon 160, 1–7 (2019)

    Article  CAS  Google Scholar 

  5. Chen, Z., Lei, Y., Chen, X., Wang, Z., Liu, J.: An aptamer based resonance light scattering assay of prostate specific antigen. Biosens. Bioelectron. 36, 35–40 (2012)

    Article  CAS  Google Scholar 

  6. Zhao, L., Huang, Y., Dong, Y., Han, X., Wang, S., et al.: Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: recent advances and perspectives. Toxins 10, 427 (2018)

    Article  CAS  Google Scholar 

  7. Konkena, B., Vasudevan, S.: Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3, 867–872 (2012)

    Article  CAS  Google Scholar 

  8. Liu, Y., Liu, C.-Y., Liu, Y.: Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl. Surf. Sci. 257, 5513–5518 (2011)

    Article  CAS  Google Scholar 

  9. Liu, B., Salgado, S., Maheshwari, V., Liu, J.: DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 26, 41–49 (2016)

    Article  CAS  Google Scholar 

  10. Arppe, R., Hyppänen, I., Perälä, N., Peltomaa, R., Kaiser, M., et al.: Quenching of the upconversion luminescence of NaYF4:Yb3+, Er3+ and NaYF4:Yb3+, Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 7, 11746–11757 (2015)

    Article  CAS  Google Scholar 

  11. Sheng, L., Ren, J., Miao, Y., Wang, J., Wang, E.: PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens. Bioelectron. 26, 3494–3499 (2011)

    Article  CAS  Google Scholar 

  12. Yang, C., Wang, Y., Marty, J.-L., Yang, X.: Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens. Bioelectron. 26, 2724–2727 (2011)

    Article  CAS  Google Scholar 

  13. Sun, D., Lu, J., Chen, D., Jiang, Y., Wang, Z., et al.: Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens. Actuat. B-Chem. 268, 359–367 (2018)

    Article  CAS  Google Scholar 

  14. Zheng, P., Wu, N.: Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem. Asian J. 12, 2343–2353 (2017)

    Article  CAS  Google Scholar 

  15. Eissa, S., Ng, A., Siaj, M., Tavares, A.C., Zourob, M.: Selection and identification of DNA aptamers against okadaic acid for biosensing application. Anal. Chem. 85, 11794–11801 (2013)

    Article  CAS  Google Scholar 

  16. Su, W., Kim, S.-E., Cho, M., Nam, J.-D., Choe, W.-S., et al.: Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. J. Innate Immun. 19, 388–397 (2013)

    Article  Google Scholar 

  17. Koczula, K.M., Gallotta, A.: Lateral flow assays. Essays Biochem. 60, 111–120 (2016)

    Article  Google Scholar 

  18. Elshafey, R., Siaj, M., Zourob, M.: DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Biosens. Bioelectron. 68, 295–302 (2015)

    Article  CAS  Google Scholar 

  19. Gu, H., Duan, N., Wu, S., Hao, L., Xia, Y., et al.: Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep. 6, 1–9 (2016)

    Article  Google Scholar 

  20. Morales-Narváez, E., Merkoçi, A.: Graphene oxide as an optical biosensing platform. Adv. Mater. 24, 3298–3308 (2012)

    Article  Google Scholar 

  21. Sun, H., Zu, Y.: A highlight of recent advances in aptamer technology and its application. Molecules 20, 11959–11980 (2015)

    Article  CAS  Google Scholar 

  22. Hermann, T.: Strategies for the design of drugs targeting RNA and RNA–protein complexes. Angew. Chem. Int. Ed. 39, 1890–1904 (2000)

    Article  CAS  Google Scholar 

  23. McCarron, P., Giddings, S.D., Quilliam, M.A.: A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography–mass spectrometry, sample extraction and quantitation procedures. Anal. Bioanal. Chem. 400, 835–846 (2011)

    Article  CAS  Google Scholar 

  24. Yarita, T., Inagaki, S., Miyamoto, A., Yamazaki, T., Kawaguchi, M., et al.: Characterization of scallop midgut gland certified reference material for quantification of diarrhetic shellfish toxins. Food chem. 298, 125011 (2019)

    Article  CAS  Google Scholar 

  25. Hayat, A., Barthelmebs, L., Sassolas, A., Marty, J.-L.: An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction. Talanta 85, 513–518 (2011)

    Article  CAS  Google Scholar 

  26. Campàs, M., De La Iglesia, P., Le Berre, M., Kane, M., Diogène, J., et al.: Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish. Biosens. Bioelectron. 24, 716–722 (2008)

    Article  Google Scholar 

  27. Pan, Y., Wan, Z., Zhong, L., Li, X., Wu, Q., et al.: Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag. Biomedical 19, 33 (2017)

    Google Scholar 

  28. Molinero-Abad, B., Perez, L., Izquierdo, D., Escudero, I., Arcos-Martinez, M.: Sensor system based on flexible screen-printed electrodes for electrochemical detection of okadaic acid in seawater. Talanta 192, 347–352 (2019)

    Article  CAS  Google Scholar 

  29. Leonardo, S., Toldrà, A., Rambla-Alegre, M., Fernández-Tejedor, M., Andree, K.B., et al.: Self-assembled monolayer-based immunoassays for okadaic acid detection in seawater as monitoring tools. Mar. Environ. Res. 133, 6–14 (2018)

    Article  CAS  Google Scholar 

  30. Stewart, L.D., Hess, P., Connolly, L., Elliott, C.T.: Development and single-laboratory validation of a pseudofunctional biosensor immunoassay for the detection of the okadaic acid group of toxins. Anal. Chem. 81, 10208–10214 (2009)

    Article  CAS  Google Scholar 

  31. Dominguez, R.B., Hayat, A., Sassolas, A., Alonso, G.A., Munoz, R., et al.: Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 99, 232–237 (2012)

    Article  CAS  Google Scholar 

  32. Smienk, H.G., Calvo, D., Razquin, P., Domínguez, E., Mata, L.: Single laboratory validation of a ready-to-use phosphatase inhibition assay for detection of okadaic acid toxins. Toxins 4, 339–352 (2012)

    Article  CAS  Google Scholar 

  33. Chinnappan, R., AlZabn, R., Mir, T.A., Bader, M., Zourob, M.: Fluorometric determination of okadaic acid using a truncated aptamer. Microchim. Acta 186, 1–9 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (20163MFDS641) from Ministry of Food and Drug Safety in 2021 and by the Chung-Ang University Research Scholarship Grants in 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Yeong Park or Tae Jung Park.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kweon, S.Y., Park, J.P., Park, C.Y. et al. Graphene Oxide-Mediated Fluorometric Aptasensor for Okadaic Acid Detection. BioChip J 16, 207–213 (2022). https://doi.org/10.1007/s13206-022-00056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00056-1

Keywords

Navigation