Skip to main content
Log in

Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This work describes a voltammetric and ultrasensitive aptasensor for sulfadimethoxine (SDM). It is based on signal amplification by making use of a multifunctional fullerene-doped reduced graphene oxide nanohybrid. The nanohybrid was coated with poly(diallyldimethylammonium chloride) to obtain a material (P-C60-rGO) with large specific surface area and a unique adsorption ability for loading it with glucose oxidase (GOx). The coating also facilitates the direct electron transfer between the active site of GOx and the glassy carbon electrode (GCE). The P-C60-rGO were then modified with Pt@Au nanoparticles, and the thiolated SDM-binding aptamer was immobilized on the nanoparticles. On exposure of the modified GCE to a solution containing SDM, it binds to the aptamer. The results were recorded through the signal responses generated from the redox center of GOx (FAD/FADH2) by cyclic voltammetry at a scan rate of 100 mV·s−1 from −0.25 to −0.65 V. Accordingly, The sensor has good specificity and stability, and response is linear in the 10 fg·mL−1 to 50 ng·mL−1 SDM concentration range with a detection limit of 8.7 fg·mL−1.

Schematic presentation of an electrochemical aptasensor for sulfadimethoxine (SDM) using multifunctional fullerene-doped graphene (C60-rGO) nanohybrids for amplification. The limit of detection for SDM is as low as 8.7 fg·mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Occurrence of sulfonamide residues along the Ebro river basin: removal in wastewater treatment plants and environmental impact assessment. Environ Int 37:462–473

    Article  Google Scholar 

  2. Raich-Montiu J, Beltrán JL, Prat MD, Granados M (2010) Studies on the extraction of sulfonamides from agricultural soils. Anal Bioanal Chem 397:807–814

    Article  CAS  Google Scholar 

  3. Chen A, Jiang X, Zhang W, Chen G, Zhao Y, Tunio TM, Liu J, Lv Z, Li C, Yang S (2013) High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Biosens Bioelectron 42:419–425

    Article  CAS  Google Scholar 

  4. Qin Y, Jatamunua F, Zhang J, Li Y, Han Y, Zou N, Shan J, Jiang Y, Pan C (2017) Analysis of sulfonamides, tilmicosin and avermectins residues in typical animal matrices with multi-plug filtration cleanup by liquid chromatography–tandem mass spectrometry detection. J Chromatogr B 1053:27–33

    Article  CAS  Google Scholar 

  5. Bach C, Boiteux V, Hemard J, Colin A, Rosin C, Munoz JF, Dauchy X (2016) Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry. J Chromatogr A 1448:98–106

    Article  CAS  Google Scholar 

  6. Cliquet P, Cox E, Haasnoot W, Schacht E, Goddeeris BM (2003) Extraction procedure for sulfachloropyridazine in porcine tissues and detection in a sulfonamide-specific enzyme-linked immunosorbent assay (ELISA). Anal Chim Acta 494:21–28

    Article  CAS  Google Scholar 

  7. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechn Adv 33:1141–1161

    Article  CAS  Google Scholar 

  8. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  Google Scholar 

  9. Ma H, Liu J, Ali MM, Mahmood MA, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research. diagnosis and therapy Chem Soc Rev 44:1240–1256

    Article  CAS  Google Scholar 

  10. Luo Z, Zhang J, Wang Y, Chen J, Li Y, Duan Y (2016) An aptamer based method for small molecules detection through monitoring salt-induced AuNPs aggregation and surface plasmon resonance (SPR) detection. Sensors Actuators B Chem 236:474–479

    Article  CAS  Google Scholar 

  11. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136

    Article  CAS  Google Scholar 

  12. Li B, Wang Y, Wei H, Dong S (2008) Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosens Bioelectron 23:965–970

    Article  CAS  Google Scholar 

  13. Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene. Biomaterials 33:1090–1096

    Article  CAS  Google Scholar 

  14. Zhao J, Hu S, Zhong W, Wu J, Shen Z, Chen Z, Li G (2014) Highly sensitive electrochemical aptasensor based on a ligase-assisted exonuclease III-catalyzed degradation reaction. ACS Appl Mater Interfaces 6:7070–7075

    Article  CAS  Google Scholar 

  15. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Article  CAS  Google Scholar 

  16. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    Article  CAS  Google Scholar 

  17. Danesh NM, Ramezani M, Emrani AS, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 75:123–128

    Article  Google Scholar 

  18. Bai L, Yuan R, Chai Y, Yuan Y, Zhuo Y, Mao L (2011) Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens Bioelectron 26:4331–4336

    Article  CAS  Google Scholar 

  19. Xu W, Wu Y, Yi H, Bai L, Chai Y, Yuan R (2014) Porous platinum nanotubes modified with dendrimers as nanocarriers and electrocatalysts for sensitive electrochemical aptasensors based on enzymatic signal amplification. Chem Commun 50:1451–1453

    Article  CAS  Google Scholar 

  20. Walcarius A, Minteer SD, Wang J, Lin Y, Merkoci A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908

    Article  CAS  Google Scholar 

  21. Lahcen AA, Errayess SA, Amine A (2016) Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Microchim Acta 183:2169–2176

    Article  Google Scholar 

  22. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140

    Article  CAS  Google Scholar 

  23. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  24. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  25. Thakur H, Kaur N, Sabherwal P, Sareen D, Prabhaker N (2017) Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64. Microchim Acta 184:1915–1922

    Article  CAS  Google Scholar 

  26. Luong JH, Glennon JD, Gedanken A, Vashist SK (2017) Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchim Acta 184:369–388

    Article  CAS  Google Scholar 

  27. Wang H, Bai L, Chai Y, Yuan R (2014) Synthesis of multi-fullerenes encapsulated palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of streptococcus suis serotype 2. Small 10:1857–1865

    Article  CAS  Google Scholar 

  28. Afreen S, Muthoosamy K, Manickam S, Hashim U (2015) Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 63:354–364

    Article  CAS  Google Scholar 

  29. Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19

    Article  CAS  Google Scholar 

  30. Bai L, Chai Y, Pu X, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6:2902–2908

    Article  CAS  Google Scholar 

  31. Bai L, Yuan R, Chai Y, Yuan Y, Wang Y, Xie S (2012) Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin. Chem Commun 48:10972–10974

    Article  CAS  Google Scholar 

  32. Tremey E, Suraniti E, Courjean O, Gounel S, Stines-Chaumeil C, Louerat F, Mano N (2014) Switching an O2 sensitive glucose oxidase bioelectrode into an almost insensitive one by cofactor redesign. Chem Commun 50:5912–5914

    Article  CAS  Google Scholar 

  33. Song KM, Jeong E, Jeon W, Jo H, Ban C (2012) A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens Bioelectron 33:113–119

    Article  CAS  Google Scholar 

  34. Li X, Wang Q, Zhao Y, Wu W, Chen J, Meng H (2013) Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J Colloid Interface Sci 411:69–75

    Article  CAS  Google Scholar 

  35. Xu F, Deng M, Liu Y, Ling X, Deng X, Wang L (2014) Facile preparation of poly (diallyldimethylammonium chloride) modified reduced graphene oxide for sensitive detection of nitrite. Electrochem Commun 47:33–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (81601856), the Third Batch of Young Backbone Teachers Funding Program in Colleges and Universities of Chongqing City ([2016] No. 53) and Funds for Young Science and Technology Talent Cultivation Plan of Chongqing City (cstc2014kjrc-qnrc00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Bai.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H., Mu, Z., Zhao, M. et al. Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase. Microchim Acta 186, 1 (2019). https://doi.org/10.1007/s00604-018-3127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3127-5

Keywords

Navigation