Skip to main content

Advertisement

Log in

Legume Tree Dominance in Central Amazonian Floodplain Forests

  • Wetland Biodiversity
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Studying the patterns of dominance and species composition of legumes can contribute to more precise models for nutrient cycling, especially the N-cycle. Leguminosae is the most important family in Central Amazonian floodplain forests surrounding large rivers. The floodplains are classified as nutrient-poor (igapó) and nutrient-rich (várzea) ecosystems. In this study, we contrast patterns of dominance and composition of legume tree species between both floodplain ecosystems based on floristic data from 22 plots. We observed significant differences in species dominance and the absolute and relative density of individuals, which were significantly higher in igapó than in várzea. A significant floristic difference between várzea and igapó was found. Higher legume species dominance and absolute and relative legume tree density suggest that legumes are more prominent in igapó. Low nutrition contents in igapó water and alluvial substrates possibly act as an environmental filter favoring the dominance of well-adapted legume tree species, which markedly contributes to the difference in floristic composition between both ecosystems.

Resumo

Estudar os padrões de dominância e composição de espécies de leguminosas pode contribuir para modelos mais precisos de ciclagem de nutrientes, especialmente o ciclo do Nitrogênio. Leguminosae é a família mais importante nas florestas inundadas da Amazônia Central. As florestas inundadas amazônicas são classificadas em ecossistemas pobres em nutrientes (igapó) e ricos em nutrientes (várzea). Neste estudo, contrastamos padrões de dominância e composição de espécies arbóreas de leguminosas entre os dois ecossistemas de florestas inundadas amazônicas com base em dados florísticos de 22 parcelas. Observamos diferenças significativas na dominância de espécies e na densidade absoluta e relativa de indivíduos, que foram significativamente maiores no igapó do que na várzea. Também encontramos uma diferença florística significativa entre várzea e igapó. A maior dominância de espécies de leguminosas e a densidade absoluta e relativa de árvores de leguminosas sugerem que as leguminosas são mais proeminentes em igapó. Os baixos teores nutricionais da água do igapó e dos substratos aluviais possivelmente atuam como um filtro ambiental favorecendo a dominância de espécies arbóreas de leguminosas que são bem adaptadas, o que contribui marcadamente para a diferença na composição florística entre os dois ecossistemas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of Data and Material

The original datasets are held by the research group Ecology, Monitoring and Sustainable Use of Wetlands (MAUA), these data include floristic inventories and flood levels. The original datasets and other information are available from the authors on reasonable request.

Code Availability

The R code used in the analyses can be made available by the main author upon reasonable request.

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JD, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711–728

    Article  Google Scholar 

  • Assis RL, Haugaasen T, Schöngart J, Montero JC, Piedade MTF, Wittmann F (2015) Patterns of tree diversity and composition in Amazonian floodplain paleo-várzea forest. Journal of Vegetation Science 26:312–322

    Article  Google Scholar 

  • Assis RL, Wittmann F, Luize BG, Haugaasen T (2017) Patterns of floristic diversity and composition in floodplain forests across four Southern Amazon River tributaries, Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants 229:124–140

    Article  Google Scholar 

  • Assis RL, Wittmann F (2011) Forest structure and tree species composition of the understory of two central Amazonian várzea forests of contrasting flood heights. FLORA 206:251–260

    Article  Google Scholar 

  • Ayres JM (1993) As matas de várzea do Mamirauá. Estudos De Mamirauá 1:1–123

    Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 12(3937):1345. https://doi.org/10.1126/science.168.3937.1345

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs 27:325–349

    Article  Google Scholar 

  • Brown S (1981) A comparison of the structure, primary productivity, and transpiration of cypress ecosystems in Florida. Ecological Monographs 51:403–427

    Article  Google Scholar 

  • Carvalho TC, Wittmann F, Piedade MTF, Resende AFD, Silva TSF, Schöngart J (2021) Fires in Amazonian Blackwater Floodplain Forests: Causes, Human Dimension, and Implications for Conservation. Frontiers in Forests and Global Change 4:755441

    Article  Google Scholar 

  • Conner WH, Day JWJ (1976) Productivity and composition of a bald cypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. American Journal of Botany 63:1354–1364

    Article  Google Scholar 

  • Conner WH, Gosselink JG, Parrondo RT (1981) Comparisons of the vegetation of three Louisiana swamp sites with different flooding regimes. American Journal of Botany 68:320–331

    Article  Google Scholar 

  • Crews TE (1993) Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 21:141–166

    Article  CAS  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs ecological considerations. In: Townsend AR (ed) New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas. Springer, Dordrecht, pp 233–246

    Chapter  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Molecular Plant-Microbe Interactions 24:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Duncan DB (1955) Duncan new multiple range test. Biometrics 11:1–42

    Article  Google Scholar 

  • Faria SM, Lima HC (1998) Additional studies of the nodulation status of legume species in Brazil. Plant and Soil 200:185–192

    Article  Google Scholar 

  • Faria SM, Diedhiou AG, Lima HC et al (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. Journal of Experimental. Botany 61:3119–3127

    Article  PubMed  CAS  Google Scholar 

  • Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jau National Park in floodplain forests in central Amazonia. Biodiversity & Conservation 6:1353–1363

    Article  Google Scholar 

  • Ferreira LV, Prance GT (1998) Species richness and floristic composition in four hectares in the Jau National Park in upland forests in Central Amazonia. Biodiversity and Conservation 7:1349–1364

    Article  Google Scholar 

  • Flores BM, Holmgren M (2021) Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. Journal of Ecology 109:3473–3486

    Article  Google Scholar 

  • Fonseca SF, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees - Structure and Function 23:127–134

    Article  Google Scholar 

  • Forsberg BR (1984) Nutrient processing in Amazon floodplain lakes. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 22:1294–1298

    CAS  Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Central T (ed) Junk WJ. Springer, Amazon Floodplain, pp 47–67

    Google Scholar 

  • Furch K, Junk WJ (1993) Seasonal nutrient dynamics in an Amazonian floodplain lake. Archiv Fur Hydrobiologie Stuttgart 128:277–285

    Article  Google Scholar 

  • Furch K, Junk WJ (1997) Physicochemical conditions in the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Springer Science & Business Media, pp 69–108

  • Furness HD, Breen HC (1980) The vegetation of seasonally flooded areas of the Pongolo River floodplain. Bothalia 13:217–230

    Article  Google Scholar 

  • Fyllas NM, Patiño S, Patiño P et al (2009) Basin-wide variations in foliar properties of Amazonian Forest: phylogeny, soils, and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    Article  CAS  PubMed  Google Scholar 

  • Householder JE, Schöngart J, Piedade MTF et al (2021) Modeling the Ecological Responses of Tree Species to the Flood Pulse of the Amazon Negro River Floodplains. Frontiers in Ecology and Evolutio: https://doi.org/10.3389/fevo.2021.628606

    Article  Google Scholar 

  • Hughes FMR (1988) The ecology of African floodplain forests in semi-arid and arid zones: a review. Journal of Biogeography 15(1):127. https://doi.org/10.2307/2845053

    Article  Google Scholar 

  • Hughes FM (1990) The influence of flooding regimes on forest distribution and composition in the Tana River floodplain, Kenya. Journal of Applied Ecology: 475–491.

  • Hupp CR, Osterkamp WR (1985) Bottomland vegetation distribution along passage creek, Virginia, irelation to fluvial landforms. Ecology 56:670–681

    Article  Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Critical Reviews in Environmental Control 21:491–565

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106:110–127

  • Junk WJ, Piedade MTF (1993) Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana 12:467–484

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzea). Wetlands Ecology and Management 20:461–475

    Article  Google Scholar 

  • Junk WJ, Wittmann F, Schöngart J, Piedade MTF (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecology and Management 23:677–693

    Article  CAS  Google Scholar 

  • Keel SHK, Prance GT (1979) Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645–655

    Article  Google Scholar 

  • Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Central T (ed) Junk WJ. Springer, Amazon Floodplain, pp 119–135

    Google Scholar 

  • Kern J, Kreibich H, Koschorreck M, Darwich A (2010) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Piedade MTF, Wittmann F, Schöngart J, Parolin P, Junk WJ (eds) Amazonian floodplain forests. Springer, pp 281–299

    Chapter  Google Scholar 

  • Kozlowski TT (1984) Responses of woody plants to flooding. Flooding and plant growth. Academic Press, New York, pp 129–163

    Book  Google Scholar 

  • Kreibich H, Kern J, Camargo PB, Moreira MZ, Victória RL, Werner D (2006) Estimation of symbiotic N2-fixation in an Amazon floodplain forest. Oecologia 147:359–368

    Article  PubMed  Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162:285–304

    Article  Google Scholar 

  • Kurzatkowski D, Leuschner C, Homeier J (2015) Effects of flooding on trees in the semi-deciduous transition forests of the Araguaia floodplain, Brazil. Acta Oecologica 69:21–30

    Article  Google Scholar 

  • Lopes A, Crema LC, Demarchi LO, Ferreira AB, Santiago IN, Ríos-Villamizar EA, Piedade MTF (2019) Herbáceas aquáticas em igapós de água preta dentro e fora de Unidades de Conservação no Estado do Amazonas. Biodiversidade Brasileira 2:45–62

    Google Scholar 

  • LPWG (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny – The Legume Phylogeny Working Group (LPWG). Taxon 66:44–77

    Article  Google Scholar 

  • Luize BG, Silva TSF, Wittmann F, Assis RL, Venticinque EM (2015) Effects of the flooding gradient on tree community diversity in várzea Forests of the Purus River, Central Amazon, Brazil. Biotropica 47:137–142

    Article  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in legume systematics. Part 5: the nitrogen factor. Royal Botanic Gardens, pp 211–228

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Piedade MTF, Wittmann F, Schöngart J, Parolin P, Junk WJ (eds) Amazonian floodplain forests. Springer, pp 43–59

    Chapter  Google Scholar 

  • Mendiburu F, Yaseen M (2021) Agricolae: statistical procedures for agricultural research. R package version 1.4.0. https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae. Accessed 26 Apr 2021

  • Mitsch WJ, Ewel KC (1979) Comparative biomass and growth of cypress in Florida wetlands. American Midland Naturalist 101:417–426

    Article  Google Scholar 

  • Monk CD, Brown TW (1965) Ecological consideration of cypress heads in northcentral Florida. American Midland Naturalist 74(1):126. https://doi.org/10.2307/2423126

    Article  Google Scholar 

  • Moreira FMS, Silva MF, Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytologist 121(4):563–570

    Article  Google Scholar 

  • Mori GB, Schietti J, Poorter L, Piedade MTF (2019) Trait divergence and habitat specialization in tropical floodplain forests trees. PLoS ONE 14(2):e0212232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? Journal of Classification 31:274–295

    Article  Google Scholar 

  • Neves JRD, Piedade MTF, Resende AF, Feitosa YO, Schöngart J (2019) Impact of climatic and hydrological disturbances on blackwater floodplain forests in Central Amazonia. Biotropica. https://doi.org/10.1111/btp.12667

  • Oksanen J, Simpson G, Blanchet F et al (2022) Vegan: community ecology package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan. Accessed 23 Apr 2022

  • Oliveira Wittmann A, Piedade MTF, Wittmann F, Schöngart J, Parolin P (2007) Patterns of structure and seedling diversity along a flooding and successional gradient in Amazonian floodplain forests. Pesquisas Botânica 58:119–138

    Google Scholar 

  • Parolin P (2000) Phenology and CO2-assimilation of trees in Central Amazonian floodplains. Journal of Tropical Ecology 16:465–473

    Article  Google Scholar 

  • Parolin P (2001) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335

    Article  PubMed  Google Scholar 

  • Parolin P (2002) Submergence tolerance vs. escape from submergence: Two strategies of seedling establishment in Amazonian floodplains. Environmental and Experimental Botany 48:177–186

    Article  Google Scholar 

  • Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U (2004a) Central Amazon floodplain forests: tree survival in a pulsing system. The Botanical Review 70:357–380

    Article  Google Scholar 

  • Parolin P, Waldhoff D, Piedade MTF (2010a) Gas exchange and photosynthesis. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (ed) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York.

  • Parolin P, Waldhoff D, Zerm M (2010b) Photochemical capacity after submersion in darkness: How Amazonian floodplain trees cope with extreme flooding. Aquatic Botany 93:83–88

    Article  CAS  Google Scholar 

  • Parolin PD, De Simone O, Haase K et al (2004b) Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review 70(3):357–380

    Article  Google Scholar 

  • Pellegrini AF, Staver AC, Hedin LO, Charles-Dominique T, Tourgee A (2016) Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. Ecology 97(9):2177–2183

    Article  PubMed  Google Scholar 

  • Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72(4):1456–1991

    Article  Google Scholar 

  • Piedade MTF, Junk W, D’Ângelo SA, Wittmann F, Schöngar J, Barbosa KMDN, Lopes A (2010) Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia 22(2):165–178. https://doi.org/10.4322/actalb.02202006

    Article  Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia iii. The Terminology of Amazonian Forest Types Subject to Inundation 31:26–38

    Google Scholar 

  • Queiroz LP (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: Plant diversity, biogeography, and conservation. Taylor & Francis CRC Press, Oxford, pp 113–149

    Google Scholar 

  • Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D (2001) Resource optimization and symbiotic nitrogen fixation. Ecosystems 4:369–388

    Article  CAS  Google Scholar 

  • Resende AF, Nelson BW, Flores BM, de Almeida DRA (2014) Fire damage in seasonally flooded and upland forests of the Central Amazon. Biotropica 46:643–646

    Article  Google Scholar 

  • Resende AF, Piedade MTF, Feitosa YO et al (2020) Flood-pulse disturbances as a threat for long-living Amazonian trees. New Phytologist 227:1790–1803

    Article  PubMed  Google Scholar 

  • Resende AF, Schöngart J, Streher AS, Ferreira-Ferreira J, Piedade MTF, Silva TSF (2019) Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production. Science of The Total Environment 659:587–598

    Article  PubMed  CAS  Google Scholar 

  • Ríos-Villamizar EA, Adeney JM, Piedade MTF, Junk WJ (2020a) Hydrochemical classification of Amazonian rivers: a systematic review and meta-analysis. Caminhos De Geografia 21:211–226

    Article  Google Scholar 

  • Ríos-Villamizar EA, Adeney JM, Piedade MTF, Junk WJ (2020b) New insights on the classification of major Amazonian river water types. Sustainable Water Resources Management 6:1–16

    Article  Google Scholar 

  • Rocha M, Assis RL, Piedade MTF et al (2019) Thirty years after Balbina Dam: diversity and floristic composition of the downstream floodplain forest, Central Amazon, Brazil. Ecohydrology 12(8):e2144

    Article  Google Scholar 

  • Rocha MD, Feitosa OF, Wittmann F et al (2020) River damming affects seedling communities of a floodplain forest in the Central Amazon. Acta Botanica Brasilica 34. https://doi.org/10.1590/0102-33062019abb0263

  • Schlesinger WH (1978) Community structure, dynamics and nutrient cycling in the Okefenokee cypress swamp-forest. Ecological Monographs 48:43–65

    Article  Google Scholar 

  • Schlüter UB, Furch B, Joly CA (1993) Physiological and anatomical adaptations by young Astrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25:384–396

    Article  Google Scholar 

  • Schmidt GW (1972) Amounts of suspended solids and dissolved substances in the middle reaches of the Amazon over the course of one year (August, 1969–July, 1970). Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas 3:208–223

  • Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungswäldern der várzea Zentralamazoniens. In: ed. by H. Böhnel, H. Tiessen & H.J. Weidelt (ed) Göttinger beiträge zur land- und forstwirtschaft in den tropen und subtropen, Vol. 149. Erich Goltze, Göttingen. p. 1–257.

  • Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology 18:581–597

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    Article  PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and net primary production of central Amazonian floodplain forests. In: Piedade MTF, Wittmann F, Schöngart J, Parolin P, Junk WJ(eds) Amazonian floodplain forests. Springer, pp 347–388

  • Schöngart J, Wittmann F, Resende AF et al (2021) The shadow of the Balbina dam: A synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. Aquatic Conservation: Marine and Freshwater Ecosystems 31:1117–1135

    Article  Google Scholar 

  • Setaro FV, Melack JM (1984) Responses of phytoplankton to experimental nutrient enrichment in an Amazon floodplain lake. Limnology and Oceanography 29:972–984

    Article  CAS  Google Scholar 

  • Silva MDSR, Ríos-Villamizar EA, Cunha HB et al (2019) A contribution to the hydrochemistry and water typology of the Amazon River and its tributaries. Caminhos De Geografia 20:360–374

    Article  Google Scholar 

  • Singer R, Aguiar IA (1986) Litter decomposing and ectomycorrhizal Basidiomycetes in an igapó forest. Plant Systematics and Evolution 153:107–117

    Article  Google Scholar 

  • Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde: 89–109.

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspectives in Plant Ecology, Evolution and Systematics 2:149–162

    Article  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecology & Diversity 3(3):211–219

    Article  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. John Wiley & Sons

    Book  Google Scholar 

  • Ter Steege H, Pitman NCA, Phillips OL et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  CAS  Google Scholar 

  • Teversham JM, Slaymaker O (1976) Vegetation composition in relation to flood frequency in Lillooet River valley, British Columbia. CATENA 3:191–201

    Article  Google Scholar 

  • Torke BM (2015) Four “flavors” of new plant species, part four. New plant discoveries. New York Botanical Garden: Science Talk Archive. https://www.nybg.org/blogs/science-talk/2015/02/four-flavors-of-new-plant-species-part-four/. Accessed 26 Apr 2021

  • Ulanowicz RE (1995) Utricularia’s secret: the advantage of positive feedback in oligotrophic environments. Ecological Modelling 79:49–57

    Article  Google Scholar 

  • Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society b: Biological Sciences 368:20130119

    Article  CAS  Google Scholar 

  • Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. International Journal Ecology and Environment 24:237–252

    Google Scholar 

  • Wang YP, Houlton BZ, Field CB (2007) A model of biogeochemical cycles of carbon nitrogen and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles 21(1). https://doi.org/10.1029/2006GB002797

  • Wittmann F, Anhuf D, Funk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. Journal of Tropical Ecology 18:805–820

    Article  Google Scholar 

  • Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. Journal of Biogeography 30:1533–1544

    Article  Google Scholar 

  • Wittmann F, Junk WJ (2016) Amazon River Basin. In: Milton GR, Prentice RC, Davidson NC (eds) Finlayson CM. The Wetland Book, Springer, pp 1–20

    Google Scholar 

  • Wittmann F, Junk WJ, Piedade MT (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196:199–212

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Junk WJ. Amazonian Floodplain Forests, Springer, pp 61–102

    Google Scholar 

  • Wittmann F, Schöngart J, Montero JC et al (2006a) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography 33:1334–1347

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Parolin P, Worbes M, Piedade MTF, Junk WJ (2006b) Wood Specific Gravity of Trees in Amazonian White-Water Forests in Relation to Flooding. IAWA Journal 27:255–268

    Article  Google Scholar 

  • Wittmann F, Marques MC, Damasceno Júnior G (2017) The Brazilian freshwater wetscape: changes in tree community diversity and composition on climatic and geographic gradients. PLOS ONE 12:e0175003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20(1–2). https://doi.org/10.1078/1125-7865-00018

Download references

Acknowledgements

This research was supported by research group Ecology, Monitoring and Sustainable Use of Wetlands (MAUA), the Brazilian Council of Science and Technology (CNPq) and Amazonas State Research Support Foundation (FAPEAM) through PELD-MAUA (CNPq/FAPEAM) 403792/2012-6 (Fase I) and 441590/2016-0 (Fase II). Yuri Oliveira Feitosa is supported by a doctoral scholarship from the resolution FAPEAM N. 018/2015—POSGRAD 2015 – INPA. Angélica Faria de Resende thanks CNPQ and FAPESP (#2019/24049-5) for financial support. Special thanks to Layon Oreste Demarchi, Celso Rabelo Costa, Valdeney de Araújo Azevedo, Mário Luis Picanço Marinho and all the field assistants who contributed to the present study.

Funding

This research was supported by the Brazilian Council of Science and Technology (CNPq) and Amazonas State Research Support Foundation (FAPEAM) through PELD-MAUA (CNPq/FAPEAM) 403792/2012–6 (Phase I) and 441590/2016–0 (Phase II). Yuri Oliveira Feitosa is supported by a doctoral scholarship from the resolution FAPEAM N. 018/2015—POSGRAD 2015 – INPA.

Author information

Authors and Affiliations

Authors

Contributions

YOF performed the statistical analysis and produced the original manuscript draft. JS, FW and MTFP collated the floristic and hydrologic data and contributed to study design, writing, editing and interpretation. ACQ, AFR and RLA assisted in fieldwork, writing review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuri Oliveira Feitosa.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All co-authors consent to the publication of the submitted manuscript and other consents are required.

Conflicts of Interest/Competing Interests

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira Feitosa, Y., Teresa Fernandez Piedade, M., Wittmann, F. et al. Legume Tree Dominance in Central Amazonian Floodplain Forests. Wetlands 42, 44 (2022). https://doi.org/10.1007/s13157-022-01564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-022-01564-4

Keywords

Navigation