Skip to main content

Advertisement

Log in

New insights on the classification of major Amazonian river water types

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Traditional water classifications for Amazonian rivers are based mainly on optical characteristics that do not fully capture their complexity. Today, an increasing amount of hydrochemical data indicates that the chemical composition of Amazonian rivers varies much more than this simple classification indicates. Revising river classification based on hydrochemical properties is proposed here. In this first comprehensive review of Amazonian river chemistry, we synthesized critical information from 168 scientific publications and distinguish unusual white, black, and clearwater rivers. It is shown the distribution of such rivers across the basin and the limitations of using generalized designations for river typologies. For example, some optically clearwater rivers draining carboniferous stripes have chemical properties similar to whitewater rivers, regardless of their high transparency. Furthermore, a clear or blackwater stream that becomes turbid because of soil erosion does not become a whitewater stream. Its hydrochemical parameters of acidity and nutrient poverty depend on the geology of the catchment area and remain relatively unaffected. These insights into Amazonian river classification provide a new understanding of their baseline limnological conditions. They have implications for sustainable management of freshwater systems and for monitoring potential impacts of large development projects and climate change on the Amazonian aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M (2016) White-sand Ecosyst Amazonia Biotropica 48:7–23

    Google Scholar 

  • APHA, Awwa, WEF (2005) Standard Methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Aufdenkampe AK et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. https://doi.org/10.1890/100014

    Article  Google Scholar 

  • Ballester MVR et al (2003) A Remote Sensing/GIS-based physical template to understand the biogeochemistry of the Ji-Paraná River Basin (Western Amazônia). Remote Sens Environ 87:429–445

    Google Scholar 

  • Castello L, Macedo MN (2015) Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biol. https://doi.org/10.1111/gcb.13173

    Article  Google Scholar 

  • Database of the Environmental Research Observatory (Geodynamical, hydrological and biogeochemical control of erosion/alteration and material transport in the Amazon basin) www.ore-hybam.org. Accessed 21/08/12 and 18/12/12

  • DOMUS (2009) Estudio de impacto ambiental—EIA del proyecto prospección sísmica 2D en el lote 76: Calidad del agua superficial vol II. Peru

  • Duque SR, Ruiz JE, Gómez J, Roessler E (1997) Limnología. In: IGAC (ed) Zonificación ambiental para el Plan modelo Colombo-Brasilero (eje Apaporis-Tabatinga): PAT. Linotipia, Bogotá, Colombia, pp 71–134

  • Elbaz-Poulichet F, Seyler P, Maurice-Bourgoin L, Guyot J, Dupuy C (1999) Trace element geochemistry in the upper Amazon drainage basin (Bolivia). Chem Geol 157:319–334

  • ELETRONORTE/THEMAG (1989) Limnological planning and monitoring of the Tocantins river in the section where the Serra Quebrada reservoir is to be built. ABRH/IWRA/UNEP/UNESCO

  • Ferreira SJF et al. (In review) Impact of rapid urbanization on seasonal water quality in the Brazilian Amazon Environmental Earth Sciences

  • Figueiredo RO, Markewitz D, Davidson EA, Schuler AE, Watrin OS, Silva PS (2010) Land-use effects on the chemical attributes of low-order streams in the eastern Amazon J Geophys Res 115 DOI 10.1029/2009JG001200

  • Finer M, Jenkins CN (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7:e35126

    Google Scholar 

  • Fisher TR, Parsley PE (1979) Amazon lakes: water storage and nutrient stripping by algae Limnol. Oceanography 24:547–553

    Google Scholar 

  • Forsberg BR et al (2017) The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12:e0182254. https://doi.org/10.1371/journal.pone.0182254

    Article  Google Scholar 

  • Furch K (1984) Water chemistry of the Amazon basin: the distribution of chemical elements among freshwaters. In: Sioli H (ed) The Amazon—limnology and landscape ecology of a mighty tropical river and its basin. Junk W.J., Dordrecht, pp 167–199

    Google Scholar 

  • Furch K (1985) Hidrogeochemistry of freshwaters crossed by the Transamazon highway, northern Brazil. Amazoniana 9:371–409

    Google Scholar 

  • Furch K (1986) Hydrogeochemistry of Amazonian freshwaters along the transamazônica in Brazil. Zbl Geol Paläont Teil I:1485–1493

    Google Scholar 

  • Furch K, Junk WJ (1980) Water chemistry and macrophytes of creeks and rivers in southern Amazonia and the central Brazilian Shield. In: Furtado I (ed) Tropical ecology and development. Part 2. The international Society of tropical Ecology, Kuala Lumpur, pp 771–796

    Google Scholar 

  • Furch K, Junk WJ (1997) Physicochemical conditions in the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Springer-Verlag, Berlin Heidelberg, pp 69–108

    Google Scholar 

  • Furch K, Klinge H (1978) Towards a regional characterization of the Biogeochemistry of alkali and alkali-earth metals in northern south America. Acta Cient Venez 29:434–444

    Google Scholar 

  • Gaillardet J, Dupré B, Allègre CJ, Négrel P (1997) Chemical and physical denudation in the Amazon River Basin. Chem Geol 142:141–173

    Google Scholar 

  • Geisler R, Schneider J (1976) The element matrix of Amazon waters and its relationship with the mineral content of fishes (determination using Neutron Activation Analysis). Amazoniana 6:47–65

    Google Scholar 

  • Gessner F (1962) Der Elektrolytgehalt des Amazonas Arch Hydrobiol 58:490–499

    Google Scholar 

  • Gibbs RJ (1967) The geochemistry of the Amazon river system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78

  • Hill J, Moran EF (1983) Adaptive strategies of wakuenai people to the oligotrophic rain forest of the Rio Negro Basin. In: Hames BR, Vickers TW (eds) Adaptive responses of native Amazonians. Academic Press Inc, New York, pp 113–131

    Google Scholar 

  • Hiraoka M (1995) Land use changes in the Amazon estuary. Global Environmental Change 5:323–336

    Google Scholar 

  • Hurd LE, Sousa RG, Siqueira-Souza FK, Cooper GJ, Kahn JR, Freitas CE (2016) Amazon floodplain fish communities: habitat connectivity and conservation in a rapidly deteriorating environment. Biol Cons 195:118–127

    Google Scholar 

  • Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (2010) Development of the Amazon valley during the Middle to Late Quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, pp 27–42

    Google Scholar 

  • Junk WJ (1973) Investigations on the Ecology and production-Biology of the "Floating Meadows" on the middle Amazon Part II. Aquatic Fauna Root Zone Floating Vegetation Amazoniana 4:9–102

    Google Scholar 

  • Junk WJ, Furch K (1980) Química da água e macrófitas aquáticas de rios e igarapés na bacia Amazônica e nas áreas adjacentes I Trecho Cuiabá-Porto Velho-Manaus. Acta Amazônica 10:611–630

    Google Scholar 

  • Junk WJ, Howard-Williams C (1984) Ecology of aquatic macrophytes in Amazonia. In: Sioli H (ed) The Amazon—limnology and landscape ecology of a mighty tropical river and its basin. Junk W.J., Dordrecht, pp 269–293

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann FA (2011) Classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31:623–640

    Google Scholar 

  • Junk WJ, Piedade MTF, Schongart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (varzeas). Wetlands Ecol Manage 20:461–475

    Google Scholar 

  • Junk WJ, Wittmann FA, Schöngart J, Piedade MTF (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manage 23:677–693

    Google Scholar 

  • Konhauser KO, Fyfe WS, Kronberg BI (1994) Multi-element chemistry of some Amazonian waters and soils. Chem Geol 111:155–175

    Google Scholar 

  • Lages AS, Horbe AMC, Moquet JS (2013) Geoquímica de rios de água preta do sudeste do Amazonas: origem, fluxo dos elementos e consumo de CO2. Acta Amazonica 43:343–352

    Google Scholar 

  • Lesack LFW (1993a) Export of nutrients and major ionic solutes from a rain forest catchment in the central Amazon basin. Water Resour Res 29:743–758

    Google Scholar 

  • Lesack LFW (1993b) Water balance and hydrologic characteristics of a rain forest catchment in the central Amazon basin. Water Resour Res 29:759–773

    Google Scholar 

  • Markewitz D, Davidson EA, Figueiredo RDO, Victoria RL, Krusche AV (2001) Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410:802–805

    Google Scholar 

  • Melack JM (1984) Amazon floodplain lakes: shape, fetch and stratification. Verh Internat Verein Limnol 22:1278–1282

    Google Scholar 

  • Melack JM, Fisher TR (1983) Diel oxygen variations and their ecological implications in Amazon floodplains lakes. Arch Hydrobiol 98:422–442

    Google Scholar 

  • Montagnini F, Muñiz-Miret N (1999) Vegetation and soils of tidal floodplains of the Amazon estuary: a comparison of várzea and terra firme forests in Pará. Brazil J Tropical Forest Sci 11:420–437

    Google Scholar 

  • Monteiro MTF, Oliveira SM, Luizão FJ, Cândido LA, Ishida FY, Tomasella J (2014) Dissolved organic carbon concentration and its relationship to electrical conductivity in the waters of a stream in a forested Amazonian blackwater catchment. Plant Ecol Diversity (Print) 7:205–213

    Google Scholar 

  • Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H (2003) Exportation of organic carbon from the Amazon river and its main tributaries. Hydrol Process 17:1329–1344

    Google Scholar 

  • MRAG (1993) Synthesis of simple predictive models for tropical river fisheries. R.5030. Fisheries management science programme overseas development administration. MRAG Ltd.

  • Oltman RE (1968) Reconnaissance investigations of the discharge and water quality of the Amazon River. U.S. Geological Survey. Circular 552. Washington, D.C.

  • Palma-Silva L (2011) Efecto de la conectividad del río Amazonas en la ecología del fitoplancton en lagos amazónicos. Master Disertation, Universidad Nacional de Colombia—Sede Amazonia

  • Richey JE (1983) Interactions of C, N, P and S in river systems: a biogeochemical model. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions, vol SCOPE. John Wiley & Sons Ltd., Chichester/New York/Brisbane/Toronto/Singapore, pp 365–383

    Google Scholar 

  • Richey JE, Brock JT, Naiman RJ, Wissmar RC, Stallard RF (1980) Organic carbon: oxidation and transport in the Amazon river. Science 207:1348–1351

    Google Scholar 

  • Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, Forsberg BR (1990) Biogeochemistry of carbon in the Amazon river. Limnol Oceanogr 35:352–371

    Google Scholar 

  • Richey JE, Victoria RL, Hedges JI, Dunne T, Martinelli LA, Mertes L, Adams J (2008) Pre-LBA Carbon in the Amazon River Experiment (CAMREX) data set https://doi.org/10.3334/ORNLDAAC/904

  • Ríos-Villamizar EA, Adeney JM, Junk WJ, Piedade MTF (2020a) Physicochemical features of Amazonian water typologies for water resources management IOP Conf Ser: Earth. Environ Sci 427:012003. https://doi.org/10.1088/1755-1315/427/1/012003

    Article  Google Scholar 

  • Ríos-Villamizar EA, Piedade MTF, Da Costa JG, Adeney JM, Junk WJ (2014) Chemistry of different Amazonian water types for river classification: a preliminary review WIT. Trans Ecol Environ 178:17–28

    Google Scholar 

  • Ríos-Villamizar EA, Piedade MTF, Junk WJ (2016) Tipologias de águas em áreas úmidas da Bacia Amazônica: uma revisão enfatizando a classificação dos rios e igarapés. In: Ferreira SJF, Silva ML, Pascoaloto D (eds) Amazônia das águas: qualidade, ecologia e educação ambiental, vol 1. 1 edn. Editora Valer/Fapeam/Inpa, Manaus, Brasil, pp 175–191

  • Ríos-Villamizar EA, Piedade MTF, Junk WJ, Waichman AV (2017) Surface water quality and deforestation of the Purus river basin. Brazilian Amazon Int Aquat Res 9:81–88. https://doi.org/10.1007/s40071-016-0150-1

    Article  Google Scholar 

  • Ríos-Villamizar EA, Piedade MTF, Junk WJ, Waichman AV (2020b) Land use changes and relations among water physicochemistry and hydrology in the Amazonian Purus river basin, northwestern Brazil. Scientia Amazonia 9(1):CAm1–CAm11

  • Santos A (1983) Limnologia do sistema Tocantins-Araguaia, aspectos físicos e biogeoquímicos. PhD. Thesis, UFSCar

  • Santos EKN, Honda RT, Nozawa SR, Ferreira-Nozawa MS (2012) Microbial diversity of soils on the banks of the Solimões and Negro rivers, state of Amazonas Brazil. Genetics Mol Biol 35:134–141

    Google Scholar 

  • Santos UM, Ribeiro MNG (1988) A hidroquímica do rio Solimões-Amazonas. Acta Amazonica 18:145–172

    Google Scholar 

  • Schenk CJ, Viger RJ, Anderson CP (1999) U.S. Geological Survey South America Geologic Map.

  • Seyler P, Guyot JL, Maurice-Bourgon L, Sondag F, Elbaz-Poulichet F, Etcheber H, Quintanilla J (1998) Origin of trace elements in the Bolivian Amazonian drainage basin. In: Fernández-Jaúregui CA (ed) Hydrology in the humid tropic environment. International Association of Hydrological Sciences (IAHS) 253, Wallingford, pp 47–58

  • Seyler PT, Boaventura GR (2001) Trace metals in the mainstem river. In: McClain M, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin and its role in a changing world. Oxford University Press, Oxford, pp 307–327

    Google Scholar 

  • Seyler PT, Boaventura GR (2003) Distribution and partition of trace metals in the Amazon basin. Hydrol Process 17:1345–1361

    Google Scholar 

  • Silva MSR et al (2019) A contribution to the hydrochemistry and water typology of the Amazon River and its tributaries. Caminhos da Geografia (UFU Online) 20:360–374

    Google Scholar 

  • Sioli H (1949) O Rio Cuparí. I Topografia e hidrografia. Bol Técn Inst Agr Norte, Belém 17:1–54

    Google Scholar 

  • Sioli H (1951) Estudo preliminar das relações entre a geologia e a limnologia da zona Bragantina (Pará) Instituto Agronómico do Norte (IAN). Boletim Técnico 24:67–76

    Google Scholar 

  • Sioli H (1954) Beiträge zur regionalen Limnologie des Amazonasgebietes. II. Der Rio Arapiuns. Limnologische Untersuchung eines Gewässers des Tertiärgebietes, Serie der “Barreiras”, des unteren Amazonas Arch Hydrobiol. Stuttgart 49:448–518

    Google Scholar 

  • Sioli H (1956a) As águas da região do alto rio Negro Bol Técn Inst Agr Norte, Belém 32

  • Sioli H (1956b) O Rio Arapiuns. Estudo limnológico de um corpo dágua da região do terciário, plioceno, série das barreiras, do Baixo Amazonas Bol Técn Inst Agr Norte, Belém 32:1-116

  • Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10:89–109

    Google Scholar 

  • Sioli H (1957) Beitraege zur regionalen Limologie des Amazonasgebietes IV. Archiv f Hydrobiol 53:161–222

    Google Scholar 

  • Sioli H (1964) General features of the limnology of Amazônia. Verh Internat Verein Limnol 15:1053–1058

    Google Scholar 

  • Sioli H (1967) The Cururu region in Brazilian Amazonia, a transition zone between hylaea and cerrado The Journal of the Indian Botanical Society 46:452–462

  • Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1:267–277

    Google Scholar 

  • Sioli H (1984) The Amazon and its main affluents: Hydrography, morphology of the river courses, and river types. In: Sioli H (ed) The Amazon—limnology and landscape ecology of a mighty tropical river and its basin. Junk W.J., Dordrecht, pp 127–166

    Google Scholar 

  • Sioli H, Klinge H (1961) Über Gewässer und Böden des brasilianischen Amazonasgebietes Die Erde. Berlin 92:205–219

    Google Scholar 

  • Sioli H, Klinge H (1962) Solos, tipos de vegetação e águas na Amazônia B Mus Paraen Emílio Goeldi, nova sér. Avulsa 1:27–41

    Google Scholar 

  • Sorribas MV et al (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change 136:555–570

    Google Scholar 

  • Stallard RF (1988) Weathering and erosion in the humid tropics. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer Academic Publishers, Dordrecht, pp 225–246

    Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon. 2 The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Google Scholar 

  • Tomasella J, Neill C, Figueiredo R, Nobre AD (2009) Water and chemical budgets at the catchment scale including nutrient exports from intact forests and disturbed landscapes. In: Keller M, Bustamante M, Gash JHC, Silva-Dias PL (eds) Amazonia and Global Change, Geophys. Monogr. Ser. Washington, AGU, pp 505–524

  • Venticinque E et al (2016) An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth Syst Sci Data 8:651–661. https://doi.org/10.5194/essd-8-651-2016

    Article  Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Stiassny MLJ (2016) Balancing hydropower and biodiversity in the Amazon Congo, and Mekong. Science 351:128–129

    Google Scholar 

  • Wittmann F et al (2006) Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr 33:1334–1347

    Google Scholar 

Download references

Acknowledgements

This work was funded by “CAPES/CNPq-IEL Nacional-Brasil”, Nuclei Excellency Support Projects (PRONEX) “Tipologias Alagáveis (CNPq/FAPEAM)”, INPA/Max-Planck, Ecology, Monitoring and Sustainable Use of Wetlands Group (MAUA/CDAM/PELD/MAUA), Climate and Environment Program at the Brazilian National Institute for Amazonian Research (INPA/UEA), Programa de Apoio à Fixação de Doutores no Amazonas—FIXAM/AM (grant number: 062.01319/2014) and Programa de Apoio à Participação em Eventos Científicos e Tecnológicos—PAPE from the Fundação de Amparo à Pesquisa do Estado do Amazonas—FAPEAM/SECTI/AM, and the Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas (INCT-INAU-UFMT). The authors are grateful to the Chemistry Laboratory (CPCRH/INPA) for water analyses assistance, to Aline Lopes, Luciana Carvalho Crema, and Kyara Martins Formiga by appreciated suggestions on the manuscript, and also to Mateus Soares de Oliveira by help with the compilation of sampling points’ geographical coordinates. We thank the anonymous reviewers for the comments and suggestions which they provided. The first author is "Bolsista CAPES/BRASIL".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Antonio Ríos-Villamizar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Villamizar, E.A., Adeney, J.M., Piedade, M.T.F. et al. New insights on the classification of major Amazonian river water types. Sustain. Water Resour. Manag. 6, 83 (2020). https://doi.org/10.1007/s40899-020-00440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-020-00440-5

Keywords

Navigation