Skip to main content

Advertisement

Log in

cPKCγ-Modulated Autophagy Contributes to Ischemic Preconditioning–Induced Neuroprotection in Mice with Ischemic Stroke via mTOR-ULK1 Pathway

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neuron-specific conventional protein kinase C (cPKC)γ mediates cerebral hypoxic preconditioning (HPC). In parallel, autophagy plays a prosurvival role in ischemic preconditioning (IPC) against ischemic stroke. However, the effect of cPKCγ on autophagy in IPC still remains to be addressed. In this study, adult and postnatal 1-day-old C57BL/6 J wild-type (cPKCγ+/+) and knockout (cPKCγ−/−) mice were used to establish in vivo and in vitro IPC models. The results showed that IPC pretreatment alleviated neuronal damage caused by lethal ischemia, which could be suppressed by autophagy inhibitor 3-MA or bafilomycin A1. Meanwhile, cPKCγ knockout blocked IPC-induced neuroprotection, accompanied by significant increase of LC3-I to LC3-II conversion and Beclin 1 protein level, and a significant decrease in p62 protein level. Immunofluorescent staining results showed a decrease of LC3 puncta numbers in IPC-treated cPKCγ+/+ neurons with fatal ischemia, which was reversed in cPKCγ−/− neurons. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2448 and ULK1 at Ser 555, rather than p-Thr-172 AMPK, was detected in IPC-pretreated neurons upon lethal ischemic exposure. The present data demonstrated that cPKCγ-modulated autophagy via the mTOR-ULK1 pathway likely modulated IPC-induced neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Abbreviations

cPKCγ:

Conventional protein kinase Cγ

IPC:

Ischemic preconditioning

MCAO:

Middle cerebral artery occlusion

OGD:

Oxygen-glucose deprivation

HBSS:

Hanks’ balanced salt solution

DMEM:

Dulbecco’s modified Eagle’s medium

3-MA:

6-Amino-3-methylpurine

Baf A1:

Bafilomycin A1

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DAPI:

4′6-Diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

LC3:

Microtubule-associated protein 1 light chain 3

SQSTM1/p62:

Sequestosome 1

mTOR:

Mechanistic target of rapamycin

ULK1:

Unc-51 like autophagy activating kinase

AMPK:

5’-Monophosphate-activated protein kinase

HSP60:

Heat shock protein 60

Tom20:

Translocase of the outer mitochondrial membrane 20

References

  1. Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, et al. Review cerebral ischemic tolerance and preconditioning: methods, mechanisms, clinical applications, and challenges. Front Neurol. 2020;11:812.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, et al. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. 2017;157:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, et al. Models and methods for conditioning the ischemic brain. J Neurosci Methods. 2018;310:63–74.

    Article  PubMed  Google Scholar 

  4. Saito N, Shirai Y. Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem. 2002;132(5):683–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, et al. Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism. Neurochem Int. 2011;58(6):684–92.

    Article  CAS  PubMed  Google Scholar 

  6. Eskelinen EL. Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol. 2019;111:1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Shi Q, Cheng Q, Chen C. The role of autophagy in the pathogenesis of ischemic stroke. Curr Neuropharmacol. 2021;19(5):629–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther. 2021;225: 107848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163–164:98–117.

    Article  PubMed  Google Scholar 

  10. Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy. 2012;8(3):310–25.

    Article  CAS  PubMed  Google Scholar 

  11. Park HK, Chu K, Jung KH, Lee ST, Bahn JJ, Kim M, et al. Autophagy is involved in the ischemic preconditioning. Neurosci Lett. 2009;451(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yan L, Sadoshima J, Vatner DE, Vatner SF. Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy. 2009;5(5):709–12.

    Article  CAS  PubMed  Google Scholar 

  13. Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy. 2019;15(12):2142–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang D, Han S, Wang S, Luo Y, Zhao L, Li J. cPKCγ-mediated down-regulation of UCHL1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK-mTOR pathway. J Cell Mol Med. 2017;21(12):3641–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Ying G, Ren C, Jizhang Y, Brogan D, Liu Z, et al. Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke. Brain Res. 2015;1594:267–73.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, et al. cPKCγ deficiency exacerbates autophagy impairment and hyperphosphorylated Tau buildup through the AMPK/mTOR pathway in mice with type 1 diabetes mellitus. Neurosci Bull. 2022. Advance online publication. https://doi.org/10.1007/s12264-022-00863-4.

  17. Xiang H, Zhang J, Lin C, Zhang L, Liu B, Ouyang L. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm Sin B. 2020;10(4):569–81.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Niu C, Han S, Zu P, Li H, Xu Q, et al. Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res. 2005;1060(1–2):62–72.

    Article  CAS  PubMed  Google Scholar 

  19. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;17(10):839–49.

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41.

    Article  CAS  PubMed  Google Scholar 

  22. Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol. 2016;95:19–25.

    Article  CAS  PubMed  Google Scholar 

  23. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131–45.

    Article  CAS  PubMed  Google Scholar 

  24. Sheng R, Qin ZH. The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin. 2015;36(4):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther. 2010;24(3):235–54.

    Article  PubMed  Google Scholar 

  26. Dunlop EA, Tee AR. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans. 2013;41(4):939–43.

    Article  CAS  PubMed  Google Scholar 

  27. Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J. 2011;440(2):283–91.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Zhang H. Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 2019;1206:67–83.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Chen Y. AMPK and autophagy. Adv Exp Med Biol. 2019;1206:85–108.

    Article  CAS  PubMed  Google Scholar 

  30. Pastore D, Pacifici F, Dave KR, Palmirotta R, Bellia A, Pasquantonio G, et al. Age-dependent levels of protein kinase Cs in brain: reduction of endogenous mechanisms of neuroprotection. Int J Mol Sci. 2019;20(14):3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei H, Li Y, Han S, Liu S, Zhang N, Zhao L, et al. cPKCγ-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway. Transl Stroke Res. 2016;7(6):497–511.

    Article  CAS  PubMed  Google Scholar 

  32. Hua R, Han S, Zhang N, Dai Q, Liu T, Li J. cPKCγ-modulated sequential reactivation of mTOR inhibited autophagic flux in neurons exposed to oxygen glucose deprivation/reperfusion. Int J Mol Sci. 2018;19(5):1380.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Liu W, Lu Y, Tian H, Duan C, Lu L, et al. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy. 2018;14(5):845–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol. 2019;1206:109–26.

    Article  CAS  PubMed  Google Scholar 

  35. Yang YD, Li ZX, Hu XM, Wan H, Zhang Q, Xiao R, et al. Insight into crosstalk between mitophagy and apoptosis/necroptosis: mechanisms and clinical applications in ischemic stroke. Curr Med Sci. 2022;42(2):237–48.

    Article  PubMed  Google Scholar 

  36. Hirayama Y, Koizumi S. Astrocytes and ischemic tolerance. Neurosci Res. 2018;126:53–9.

    Article  CAS  PubMed  Google Scholar 

  37. McDonough A, Weinstein JR. The role of microglia in ischemic preconditioning. Glia. 2020;68(3):455–71.

    Article  PubMed  Google Scholar 

  38. Xiang J, Andjelkovic AV, Zhou N, Hua Y, Xi G, Wang MM, et al. Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli? Cond Med. 2018;1(5):220–32.

    PubMed  PubMed Central  Google Scholar 

  39. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2020;146:45–58.

    Article  CAS  PubMed  Google Scholar 

  40. Russo E, Nguyen H, Lippert T, Tuazon J, Borlongan CV, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ. 2018;4(3):84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lotz C, Herrmann J, Notz Q, Meybohm P, Kehl F. Mitochondria and pharmacologic cardiac conditioning-at the heart of ischemic injury. Int J Mol Sci. 2021;22(6):3224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial quality control in cardiac-conditioning strategies against ischemia-reperfusion injury. Life (Basel). 2021;11(11):1123.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2017YFC1308401 to X. J.) and the National Natural Science Foundation of China (No. 82027802 to X. J., No. 31671205 and No. 31972911 to J. L.).

Author information

Authors and Affiliations

Authors

Contributions

Y. Z., J. L., and X. J. conceived and designed the experiments; Y. Z. and L. M. performed the experiments; Y. Z. and C. V. B. wrote and edited the manuscript; L. M., Y. Y., and L. Z. analyzed the data; D. W. and S. H. offered technical support.

Corresponding authors

Correspondence to Junfa Li or Xunming Ji.

Ethics declarations

Ethical Approval and Consent to Participate

The experimental procedures were approved by the Experimental Animal Ethics Committee of Capital Medical University (AEEI-2020-144).

Human and Animal Ethics

This study was conducted according to the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health as well as ARRIVE guidelines.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors’ Information

Y. Z., L. M., Y. Y., L. Z., S. H., and J. L. belong to the Department of Neurobiology, Capital Medical University, who focus on the pathology of stroke and conditioning medicine. D. W. and X. J. work as an associate researcher and a clinical doctor respectively at Xuanwu Hospital, Capital Medical University. X. J. is interested in translational stroke research. C. V. B. is a professor at the Department of Neurosurgery and Brain Repair, University of South Florida. C. V. B. devotes himself to novel neuroprotective and neurorestorative therapies in brain injury.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, L., Yan, Y. et al. cPKCγ-Modulated Autophagy Contributes to Ischemic Preconditioning–Induced Neuroprotection in Mice with Ischemic Stroke via mTOR-ULK1 Pathway. Transl. Stroke Res. 14, 790–801 (2023). https://doi.org/10.1007/s12975-022-01094-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01094-5

Keywords

Navigation