Skip to main content

Advertisement

Log in

The Second Window of Preconditioning (SWOP) Where Are We Now?

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

A standard ischemic preconditioning (IPC) stimulus of one or more brief episodes of non-lethal myocardial ischemia and reperfusion elicits a bi-phasic pattern of cardioprotection. The first phase manifests almost immediately following the IPC stimulus and lasts for 1–2 h, after which its effect disappears (termed classical or early IPC). The second phase of cardioprotection appears 12–24 h later and lasts for 48–72 h (termed the Second Window of Protection [SWOP] or delayed or late IPC). The cardioprotection conferred by delayed IPC is robust and ubiquitous but is not as powerful as early IPC. Although there are some similarities in the mechanisms underlying early and delayed IPC, one of the major distinctions between the two is the latter’s requirement for de novo protein synthesis of distal mediators such as iNOS and COX-2 which mediate the cardioprotection 24 h after the IPC stimulus. The phenomenon of delayed IPC has been demonstrated in man using a variety of experimental models. However, its clinical application has been limited by the same factors which affect early IPC- i.e. the need to intervene before the onset of myocardial ischemia, thereby restricting its potential clinical utility to planned settings of acute myocardial ischemia-reperfusion injury such as coronary artery bypass graft surgery, cardiac transplantation and percutaneous coronary intervention. In this article, the focus will be on the origins of delayed IPC, the mechanisms underlying its delayed cardioprotective effect, and the potential areas for its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    CAS  PubMed  Google Scholar 

  2. Lawson CS, Downey JM. Preconditioning: state of the art myocardial protection. Cardiovasc Res. 1993;27:542–50.

    CAS  PubMed  Google Scholar 

  3. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88:1264–72.

    CAS  PubMed  Google Scholar 

  4. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993;72:1293–9.

    CAS  PubMed  Google Scholar 

  5. Szekeres L, Papp JG, Szilvassy Z, Udvary E, Vegh A. Moderate stress by cardiac pacing may induce both short term and long term cardioprotection. Cardiovasc Res. 1993;27:593–6.

    CAS  PubMed  Google Scholar 

  6. Szekeres L. Drug-induced delayed cardiac protection against the effects of myocardial ischemia. Pharmacol Ther. 2005.

  7. Baxter GF, Goma FM, Yellon DM. Characterisation of the infarct-limiting effect of delayed preconditioning: timecourse and dose-dependency studies in rabbit myocardium. Basic Res Cardiol. 1997;92:159–67.

    CAS  PubMed  Google Scholar 

  8. Currie RW, Karmazyn M, Kloc M, Mailer K. Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res. 1988;63:543–9.

    CAS  PubMed  Google Scholar 

  9. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med. 1999;189:1699–706.

    CAS  PubMed  Google Scholar 

  10. Domenech R, Macho P, Schwarze H, Sanchez G. Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc Res. 2002;55:561–6.

    CAS  PubMed  Google Scholar 

  11. Stambaugh K, Elliott GT, Jacobson KA, Liang BT. Additive effects of late preconditioning produced by monophosphoryl lipid A and the early preconditioning mediated by adenosine receptors and KATP channel. Circulation. 1999;99:3300–7.

    CAS  PubMed  Google Scholar 

  12. Mullenheim J, Schlack W, Frassdorf J, Heinen A, Preckel B, Thamer V. Additive protective effects of late and early ischaemic preconditioning are mediated by the opening of KATP channels in vivo. Pflugers Arch. 2001;442:178–87.

    CAS  PubMed  Google Scholar 

  13. Mullenheim J, Ebel D, Bauer M, Otto F, Heinen A, Frassdorf J, et al. Sevoflurane confers additional cardioprotection after ischemic late preconditioning in rabbits. Anesthesiology. 2003;99:624–31.

    PubMed  Google Scholar 

  14. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    CAS  PubMed  Google Scholar 

  15. Hausenloy DJ. Signalling pathways in ischaemic postconditioning. Thromb Haemost. 2009;101:626–34.

    CAS  PubMed  Google Scholar 

  16. Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, et al. The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am J Physiol Heart Circ Physiol. 2007;293:H2557–64.

    CAS  PubMed  Google Scholar 

  17. Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res. 2002;55:466–73.

    CAS  PubMed  Google Scholar 

  18. Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997;96:2311–6.

    CAS  PubMed  Google Scholar 

  19. Laude K, Thuillez C, Richard V. Peroxynitrite triggers a delayed resistance of coronary endothelial cells against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2002;283:H1418–23.

    CAS  PubMed  Google Scholar 

  20. Richard V, Danielou E, Kaeffer N, Thuillez C. Delayed endothelial protective effects of monophosphoryl lipid A after myocardial ischemia and reperfusion in rats. J Mol Cell Cardiol. 1999;31:1117–23.

    CAS  PubMed  Google Scholar 

  21. Joyeux M, Bouchard JF, Lamontagne D, Godin-Ribuot D, Ribuot C. Heat stress-induced protection of endothelial function against ischaemic injury is abolished by ATP-sensitive potassium channel blockade in the isolated rat heart. Br J Pharmacol. 2000;130:345–50.

    CAS  PubMed  Google Scholar 

  22. Loktionova SA, Ilyinskaya OP, Kabakov AE. Early and delayed tolerance to simulated ischemia in heat-preconditioned endothelial cells: a role for HSP27. Am J Physiol. 1998;275:H2147–58.

    CAS  PubMed  Google Scholar 

  23. Laude K, Favre J, Thuillez C, Richard V. NO produced by endothelial NO synthase is a mediator of delayed preconditioning-induced endothelial protection. Am J Physiol Heart Circ Physiol. 2003;284:H2053–60.

    CAS  PubMed  Google Scholar 

  24. Kim SJ, Zhang X, Xu X, Chen A, Gonzalez JB, Koul S, et al. Evidence for enhanced eNOS function in coronary microvessels during the second window of protection. Am J Physiol Heart Circ Physiol. 2007;292:H2152–8.

    CAS  PubMed  Google Scholar 

  25. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.

    CAS  PubMed  Google Scholar 

  26. Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G. Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg. 2004;26:968–73.

    PubMed  Google Scholar 

  27. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46:450–6.

    CAS  PubMed  Google Scholar 

  28. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350–6.

    CAS  PubMed  Google Scholar 

  29. Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation. 1994;90:2993–3000.

    CAS  PubMed  Google Scholar 

  30. Dana A, Baxter GF, Walker JM, Yellon DM. Prolonging the delayed phase of myocardial protection: repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state. J Am Coll Cardiol. 1998;31:1142–9.

    CAS  PubMed  Google Scholar 

  31. Maldonado C, Qiu Y, Tang XL, Cohen MV, Auchampach J, Bolli R. Role of adenosine receptors in late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol. 1997;273:H1324–32.

    CAS  PubMed  Google Scholar 

  32. Dana A, Skarli M, Papakrivopoulou J, Yellon DM. Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res. 2000;86:989–97.

    CAS  PubMed  Google Scholar 

  33. Guo Y, Stein AB, Wu WJ, Zhu X, Tan W, Li Q, et al. Late preconditioning induced by NO donors, adenosine A1 receptor agonists, and delta1-opioid receptor agonists is mediated by iNOS. Am J Physiol Heart Circ Physiol. 2005;289:H2251–7.

    CAS  PubMed  Google Scholar 

  34. Dana A, Jonassen AK, Yamashita N, Yellon DM. Adenosine A(1) receptor activation induces delayed preconditioning in rats mediated by manganese superoxide dismutase. Circulation. 2000;101:2841–8.

    CAS  PubMed  Google Scholar 

  35. Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC. Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol. 1999;277:H128–35.

    CAS  PubMed  Google Scholar 

  36. Takano H, Bolli R, Black Jr RG, Kodani E, Tang XL, Yang Z, et al. A(1) or A(3) adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res. 2001;88:520–8.

    CAS  PubMed  Google Scholar 

  37. Kodani E, Shinmura K, Xuan YT, Takano H, Auchampach JA, Tang XL, et al. Cyclooxygenase-2 does not mediate late preconditioning induced by activation of adenosine A1 or A3 receptors. Am J Physiol Heart Circ Physiol. 2001;281:H959–68.

    CAS  PubMed  Google Scholar 

  38. Zhao TC, Kukreja RC. Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol. 2002;34:263–77.

    CAS  PubMed  Google Scholar 

  39. Fryer RM, Hsu AK, Eells JT, Nagase H, Gross GJ. Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels. Circ Res. 1999;84:846–51.

    CAS  PubMed  Google Scholar 

  40. Gross ER, Peart JN, Hsu AK, Auchampach JA, Gross GJ. Extending the cardioprotective window using a novel delta-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway. Am J Physiol Heart Circ Physiol. 2005;288:H2744–9.

    CAS  PubMed  Google Scholar 

  41. Wu S, Li HY, Wong TM. Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor. Circ Res. 1999;84:1388–95.

    CAS  PubMed  Google Scholar 

  42. Chen M, Zhou JJ, Kam KW, Qi JS, Yan WY, Wu S, et al. Roles of KATP channels in delayed cardioprotection and intracellular Ca(2+) in the rat heart as revealed by kappa-opioid receptor stimulation with U50488H. Br J Pharmacol. 2003;140:750–8.

    CAS  PubMed  Google Scholar 

  43. Yu CK, Li YH, Wong GT, Wong TM, Irwin MG. Remifentanil preconditioning confers delayed cardioprotection in the rat. Br J Anaesth. 2007;99:632–8.

    CAS  PubMed  Google Scholar 

  44. Patel HH, Hsu A, Moore J, Gross GJ. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J Mol Cell Cardiol. 2001;33:1455–65.

    CAS  PubMed  Google Scholar 

  45. Wang GY, Zhou JJ, Shan J, Wong TM. Protein kinase C-epsilon is a trigger of delayed cardioprotection against myocardial ischemia of kappa-opioid receptor stimulation in rat ventricular myocytes. J Pharmacol Exp Ther. 2001;299:603–10.

    CAS  PubMed  Google Scholar 

  46. Fryer RM, Hsu AK, Gross GJ. ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol. 2001;96:136–42.

    CAS  PubMed  Google Scholar 

  47. Zhou JJ, Pei JM, Wang GY, Wu S, Wang WP, Cho CH, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2001;281:H40–7.

    CAS  PubMed  Google Scholar 

  48. Patel HH, Hsu AK, Gross GJ. COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat. Life Sci. 2004;75:129–40.

    CAS  PubMed  Google Scholar 

  49. Jiang X, Shi E, Nakajima Y, Sato S. COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent mechanism. Life Sci. 2006;78:2543–9.

    CAS  PubMed  Google Scholar 

  50. Jiang X, Shi E, Nakajima Y, Sato S, Ohno K, Yue H. Cyclooxygenase-1 mediates the final stage of morphine-induced delayed cardioprotection in concert with cyclooxygenase-2. J Am Coll Cardiol. 2005;45:1707–15.

    CAS  PubMed  Google Scholar 

  51. Liu J, Kam KW, Zhou JJ, Yan WY, Chen M, Wu S, et al. Effects of heat shock protein 70 activation by metabolic inhibition preconditioning or kappa-opioid receptor stimulation on Ca2+ homeostasis in rat ventricular myocytes subjected to ischemic insults. J Pharmacol Exp Ther. 2004;310:606–13.

    CAS  PubMed  Google Scholar 

  52. Liu J, Kam KW, Borchert GH, Kravtsov GM, Ballard HJ, Wong TM. Further study on the role of HSP70 on Ca2+ homeostasis in rat ventricular myocytes subjected to simulated ischemia. Am J Physiol Cell Physiol. 2006;290:C583–91.

    CAS  PubMed  Google Scholar 

  53. Patel HH, Hsu AK, Peart JN, Gross GJ. Sarcolemmal K(ATP) channel triggers opioid-induced delayed cardioprotection in the rat. Circ Res. 2002;91:186–8.

    CAS  PubMed  Google Scholar 

  54. Patel HH, Hsu A, Gross GJ. Delayed cardioprotection is mediated via a non-peptide delta opioid agonist, SNC-121, independent of opioid receptor stimulation. Basic Res Cardiol. 2004;99:38–45.

    CAS  PubMed  Google Scholar 

  55. Kositprapa C, Ockaili RA, Kukreja RC. Bradykinin B2 receptor is involved in the late phase of preconditioning in rabbit heart. J Mol Cell Cardiol. 2001;33:1355–62.

    CAS  PubMed  Google Scholar 

  56. Ebrahim Z, Yellon DM, Baxter GF. Bradykinin elicits “second window” myocardial protection in rat heart through an NO-dependent mechanism. Am J Physiol Heart Circ Physiol. 2001;281:H1458–64.

    CAS  PubMed  Google Scholar 

  57. Jaberansari MT, Baxter GF, Muller CA, Latouf SE, Roth E, Opie LH, et al. Angiotensin-converting enzyme inhibition enhances a subthreshold stimulus to elicit delayed preconditioning in pig myocardium. J Am Coll Cardiol. 2001;37:1996–2001.

    CAS  PubMed  Google Scholar 

  58. Yamashita N, Hoshida S, Otsu K, Taniguchi N, Kuzuya T, Hori M. The involvement of cytokines in the second window of ischaemic preconditioning. Br J Pharmacol. 2000;131:415–22.

    CAS  PubMed  Google Scholar 

  59. Dawn B, Guo Y, Rezazadeh A, Wang OL, Stein AB, Hunt G, et al. Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol. 2004;37:51–61.

    CAS  PubMed  Google Scholar 

  60. Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sanganalmath SK, et al. The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol. 2008;45:735–41.

    CAS  PubMed  Google Scholar 

  61. Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 2004;64:61–71.

    CAS  PubMed  Google Scholar 

  62. Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.

    CAS  PubMed  Google Scholar 

  63. Zhou X, Zhai X, Ashraf M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation. 1996;93:1177–84.

    CAS  PubMed  Google Scholar 

  64. Gross ER, Peart JN, Hsu AK, Grover GJ, Gross GJ. K(ATP) opener-induced delayed cardioprotection: involvement of sarcolemmal and mitochondrial K(ATP) channels, free radicals and MEK1/2. J Mol Cell Cardiol. 2003;35:985–92.

    CAS  PubMed  Google Scholar 

  65. Bolli R, Bhatti ZA, Tang XL, Qiu Y, Zhang Q, Guo Y, et al. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res. 1997;81:42–52.

    CAS  PubMed  Google Scholar 

  66. Qiu Y, Rizvi A, Tang XL, Manchikalapudi S, Takano H, Jadoon AK, et al. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol. 1997;273:H2931–6.

    CAS  PubMed  Google Scholar 

  67. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res. 1998;83:73–84.

    CAS  PubMed  Google Scholar 

  68. Xuan YT, Tang XL, Qiu Y, Banerjee S, Takano H, Han H, et al. Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. Am J Physiol Heart Circ Physiol. 2000;279:H2360–71.

    CAS  PubMed  Google Scholar 

  69. Takano H, Manchikalapudi S, Tang XL, Qiu Y, Rizvi A, Jadoon AK, et al. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation. 1998;98:441–9.

    CAS  PubMed  Google Scholar 

  70. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Bolli R. Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation. 2007;116:535–44.

    CAS  PubMed  Google Scholar 

  71. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol. 2006;40:119–30.

    CAS  PubMed  Google Scholar 

  72. Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock. 2006;26:154–61.

    CAS  PubMed  Google Scholar 

  73. Hu LF, Pan TT, Neo KL, Yong QC, Bian JS. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch. 2008;455:971–8.

    CAS  PubMed  Google Scholar 

  74. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105:365–74.

    CAS  PubMed  Google Scholar 

  75. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium. Br J Pharmacol. 1995;115:222–4.

    CAS  PubMed  Google Scholar 

  76. Qiu Y, Ping P, Tang XL, Manchikalapudi S, Rizvi A, Zhang J, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest. 1998;101:2182–98.

    CAS  PubMed  Google Scholar 

  77. Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, et al. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res. 1999;84:587–604.

    CAS  PubMed  Google Scholar 

  78. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO, et al. Role of the protein kinase C-{epsilon}-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation. 2005.

  79. Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, et al. Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 1996;396:233–7.

    CAS  PubMed  Google Scholar 

  80. Imagawa J, Baxter GF, Yellon DM. Genistein, a tyrosine kinase inhibitor, blocks the “second window of protection” 48 h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol. 1997;29:1885–93.

    CAS  PubMed  Google Scholar 

  81. Okubo S, Bernardo NL, Elliott GT, Hess ML, Kukreja RC. Tyrosine kinase signaling in action potential shortening and expression of HSP72 in late preconditioning. Am J Physiol Heart Circ Physiol. 2000;279:H2269–76.

    CAS  PubMed  Google Scholar 

  82. Dawn B, Takano H, Tang XL, Kodani E, Banerjee S, Rezazadeh A, et al. Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol. 2002;283:H549–56.

    CAS  PubMed  Google Scholar 

  83. Tang XL, Kodani E, Takano H, Hill M, Shinmura K, Vondriska TM, et al. Protein tyrosine kinase signaling is necessary for NO donor-induced late preconditioning against myocardial stunning. Am J Physiol Heart Circ Physiol. 2003;284:H1441–8.

    CAS  PubMed  Google Scholar 

  84. Dawn B, Xuan YT, Qiu Y, Takano H, Tang XL, Ping P, et al. Bifunctional role of protein tyrosine kinases in late preconditioning against myocardial stunning in conscious rabbits. Circ Res. 1999;85:1154–63.

    CAS  PubMed  Google Scholar 

  85. Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, et al. PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000;279:H1679–89.

    CAS  PubMed  Google Scholar 

  86. Samavati L, Monick MM, Sanlioglu S, Buettner GR, Oberley LW, Hunninghake GW. Mitochondrial K(ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism. Am J Physiol Cell Physiol. 2002;283:C273–81.

    CAS  PubMed  Google Scholar 

  87. Bell RM, Clark JE, Hearse DJ, Shattock MJ. Reperfusion kinase phosphorylation is essential but not sufficient in the mediation of pharmacological preconditioning: characterisation in the bi-phasic profile of early and late protection. Cardiovasc Res. 2007;73:153–63.

    CAS  PubMed  Google Scholar 

  88. Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res. 2000;87:309–15.

    CAS  PubMed  Google Scholar 

  89. Kis A, Yellon DM, Baxter GF. Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. J Mol Cell Cardiol. 2003;35:1063–71.

    CAS  PubMed  Google Scholar 

  90. Wang Y, Ahmad N, Kudo M, Ashraf M. Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning. Am J Physiol Heart Circ Physiol. 2004;287:H1125–31.

    CAS  PubMed  Google Scholar 

  91. Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84:1095–109.

    CAS  PubMed  Google Scholar 

  92. Wang Y, Kudo M, Xu M, Ayub A, Ashraf M. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol. 2001;33:2037–46.

    CAS  PubMed  Google Scholar 

  93. Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, et al. PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000;279:H1679–89.

    CAS  PubMed  Google Scholar 

  94. Xuan YT, Guo Y, Zhu Y, Han H, Langenbach R, Dawn B, et al. Mechanism of cyclooxygenase-2 upregulation in late preconditioning. J Mol Cell Cardiol. 2003;35:525–37.

    CAS  PubMed  Google Scholar 

  95. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    CAS  PubMed  Google Scholar 

  96. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation. 2003;108:79–85.

    CAS  PubMed  Google Scholar 

  97. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999;274:32631–7.

    CAS  PubMed  Google Scholar 

  98. Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A. Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res. 2006;4:471–9.

    CAS  PubMed  Google Scholar 

  99. Xi L, Taher M, Yin C, Salloum F, Kukreja RC. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol. 2004;287:H2369–75.

    CAS  PubMed  Google Scholar 

  100. Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler III AA. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res. 2006;98:133–40.

    CAS  PubMed  Google Scholar 

  101. Date T, Mochizuki S, Belanger AJ, Yamakawa M, Luo Z, Vincent KA, et al. Expression of constitutively stable hybrid hypoxia-inducible factor-1alpha protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury. Am J Physiol Cell Physiol. 2005;288:C314–20.

    CAS  PubMed  Google Scholar 

  102. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol. 2005;46:2116–24.

    CAS  PubMed  Google Scholar 

  103. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler III AA, et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol. 2005;289:H542–8.

    CAS  PubMed  Google Scholar 

  104. Nelson SK, Wong GH, McCord JM. Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury. J Mol Cell Cardiol. 1995;27:223–9.

    CAS  PubMed  Google Scholar 

  105. Nogae C, Makino N, Hata T, Nogae I, Takahashi S, Suzuki K, et al. Interleukin 1 alpha-induced expression of manganous superoxide dismutase reduces myocardial reperfusion injury in the rat. J Mol Cell Cardiol. 1995;27:2091–9.

    CAS  PubMed  Google Scholar 

  106. Eddy LJ, Goeddel DV, Wong GH. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 1992;184:1056–9.

    CAS  PubMed  Google Scholar 

  107. Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, et al. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol. 1993;264:H33–9.

    CAS  PubMed  Google Scholar 

  108. Yamashita N, Nishida M, Hoshida S, Kuzuya T, Hori M, Taniguchi N, et al. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest. 1994;94:2193–9.

    CAS  PubMed  Google Scholar 

  109. Yamashita N, Hoshida S, Nishida M, Igarashi J, Taniguchi N, Tada M, et al. Heat shock-induced manganese superoxide dismutase enhances the tolerance of cardiac myocytes to hypoxia-reoxygenation injury. J Mol Cell Cardiol. 1997;29:1805–13.

    CAS  PubMed  Google Scholar 

  110. Zhai X, Zhou X, Ashraf M. Late ischemic preconditioning is mediated in myocytes by enhanced endogenous antioxidant activity stimulated by oxygen-derived free radicals. Ann N Y Acad Sci. 1996;793:156–66.

    CAS  PubMed  Google Scholar 

  111. Li Q, Bolli R, Qiu Y, Tang XL, Murphree SS, French BA. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation. 1998;98:1438–48.

    CAS  PubMed  Google Scholar 

  112. Li Q, Bolli R, Qiu Y, Tang XL, Guo Y, French BA. Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation. 2001;103:1893–8.

    CAS  PubMed  Google Scholar 

  113. Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol. 1992;24:895–907.

    CAS  PubMed  Google Scholar 

  114. Tanaka M, Fujiwara H, Yamasaki K, Miyamae M, Yokota R, Hasegawa K, et al. Ischemic preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits. Am J Physiol. 1994;267:H1476–82.

    CAS  PubMed  Google Scholar 

  115. Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest. 1995;95:388–403.

    CAS  PubMed  Google Scholar 

  116. Saganek LJ, Ignasiak DP, Batley BL, Potoczak RE, Dodd G, Gallagher KP. Heat stress increases cardiac HSP72i but fails to reduce myocardial infarct size in rabbits 24 hours later. Basic Res Cardiol. 1997;92:331–8.

    CAS  PubMed  Google Scholar 

  117. Qian YZ, Bernardo NL, Nayeem MA, Chelliah J, Kukreja RC. Induction of 72-kDa heat shock protein does not produce second window of ischemic preconditioning in rat heart. Am J Physiol. 1999;276:H224–34.

    CAS  PubMed  Google Scholar 

  118. Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res. 2009;104:572–5.

    CAS  PubMed  Google Scholar 

  119. Imagawa J, Yellon DM, Baxter GF. Pharmacological evidence that inducible nitric oxide synthase is a mediator of delayed preconditioning. Br J Pharmacol. 1999;126:701–8.

    CAS  PubMed  Google Scholar 

  120. Kim SJ, Kim YK, Takagi G, Huang CH, Geng YJ, Vatner SF. Enhanced iNOS function in myocytes one day after brief ischemic episode. Am J Physiol Heart Circ Physiol. 2002;282:H423–8.

    CAS  PubMed  Google Scholar 

  121. Xi L, Tekin D, Gursoy E, Salloum F, Levasseur JE, Kukreja RC. Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia. Am J Physiol Heart Circ Physiol. 2002;283:H5–12.

    CAS  PubMed  Google Scholar 

  122. Wang YP, Sato C, Mizoguchi K, Yamashita Y, Oe M, Maeta H. Lipopolysaccharide triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovasc Res. 2002;56:33–42.

    CAS  PubMed  Google Scholar 

  123. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A. 1999;96:11507–12.

    CAS  PubMed  Google Scholar 

  124. Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC. Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation. 2000;102:902–7.

    CAS  PubMed  Google Scholar 

  125. Xi L, Jarrett NC, Hess ML, Kukreja RC. Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice. Circulation. 1999;99:2157–63.

    CAS  PubMed  Google Scholar 

  126. Tejero-Taldo MI, Gursoy E, Zhao TC, Kukreja RC. Alpha-adrenergic receptor stimulation produces late preconditioning through inducible nitric oxide synthase in mouse heart. J Mol Cell Cardiol. 2002;34:185–95.

    CAS  PubMed  Google Scholar 

  127. Jiang X, Shi E, Nakajima Y, Sato S. Inducible nitric oxide synthase mediates delayed cardioprotection induced by morphine in vivo: evidence from pharmacologic inhibition and gene-knockout mice. Anesthesiology. 2004;101:82–8.

    CAS  PubMed  Google Scholar 

  128. Jones WK, Flaherty MP, Tang XL, Takano H, Qiu Y, Banerjee S, et al. Ischemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J Mol Cell Cardiol. 1999;31:1469–81.

    CAS  PubMed  Google Scholar 

  129. West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation. 2008;118:1970–8.

    CAS  PubMed  Google Scholar 

  130. Shinmura K, Xuan YT, Tang XL, Kodani E, Han H, Zhu Y, et al. Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning. Circ Res. 2002;90:602–8.

    CAS  PubMed  Google Scholar 

  131. Wang Y, Kodani E, Wang J, Zhang SX, Takano H, Tang XL, et al. Cardioprotection during the final stage of the late phase of ischemic preconditioning is mediated by neuronal NO synthase in concert with cyclooxygenase-2. Circ Res. 2004;95:84–91.

    CAS  PubMed  Google Scholar 

  132. Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, et al. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci U S A. 2000;97:10197–202.

    CAS  PubMed  Google Scholar 

  133. Kodani E, Xuan YT, Shinmura K, Takano H, Tang XL, Bolli R. Delta-opioid receptor-induced late preconditioning is mediated by cyclooxygenase-2 in conscious rabbits. Am J Physiol Heart Circ Physiol. 2002;283:H1943–57.

    CAS  PubMed  Google Scholar 

  134. Tang XL, Xuan YT, Zhu Y, Shirk G, Bolli R. Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol Heart Circ Physiol. 2004;286:H1273–80.

    CAS  PubMed  Google Scholar 

  135. Tanaka K, Ludwig LM, Krolikowski JG, Alcindor D, Pratt PF, Kersten JR, et al. Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury: role of cyclooxygenase-2. Anesthesiology. 2004;100:525–31.

    CAS  PubMed  Google Scholar 

  136. Alcindor D, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR. Cyclooxygenase-2 mediates ischemic, anesthetic, and pharmacologic preconditioning in vivo. Anesthesiology. 2004;100:547–54.

    CAS  PubMed  Google Scholar 

  137. Arnaud C, Joyeux-Faure M, Godin-Ribuot D, Ribuot C. COX-2: an in vivo evidence of its participation in heat stress-induced myocardial preconditioning. Cardiovasc Res. 2003;58:582–8.

    CAS  PubMed  Google Scholar 

  138. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286:954–9.

    CAS  PubMed  Google Scholar 

  139. Shinmura K, Kodani E, Xuan YT, Dawn B, Tang XL, Bolli R. Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits. J Am Coll Cardiol. 2003;41:1183–94.

    CAS  PubMed  Google Scholar 

  140. Shinmura K, Bolli R, Liu SQ, Tang XL, Kodani E, Xuan YT, et al. Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res. 2002;91:240–6.

    CAS  PubMed  Google Scholar 

  141. Jancso G, Cserepes B, Gasz B, Benko L, Borsiczky B, Ferenc A, et al. Expression and protective role of heme oxygenase-1 in delayed myocardial preconditioning. Ann N Y Acad Sci. 2007;1095:251–61.

    CAS  PubMed  Google Scholar 

  142. Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007;12:217–34.

    CAS  PubMed  Google Scholar 

  143. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol. 2002;542:735–41.

    CAS  PubMed  Google Scholar 

  144. Hanley PJ, Daut J. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol. 2005;39:17–50.

    CAS  PubMed  Google Scholar 

  145. Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol. 1999;276:H1323–30.

    CAS  PubMed  Google Scholar 

  146. Mei DA, Elliott GT, Gross GJ. KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A. Am J Physiol. 1996;271:H2723–9.

    CAS  PubMed  Google Scholar 

  147. Hoag JB, Qian YZ, Nayeem MA, D’Angelo M, Kukreja RC. ATP-sensitive potassium channel mediates delayed ischemic protection by heat stress in rabbit heart. Am J Physiol. 1997;273:H2458–64.

    CAS  PubMed  Google Scholar 

  148. Baxter GF, Yellon DM. ATP-sensitive K+ channels mediate the delayed cardioprotective effect of adenosine A1 receptor activation. J Mol Cell Cardiol. 1999;31:981–9.

    CAS  PubMed  Google Scholar 

  149. Naderi R, Imani A, Faghihi M. Phenylephrine produces late pharmacological preconditioning in the isolated rat heart. Eur J Pharmacol. 2009.

  150. Basgut B, Aypar E, Basgut E, Akin KO, Kilic N, Cakici I. The mechanism of the late preconditioning effect of 3-nitropropionic acid. Arch Pharm Res. 2008;31:1257–63.

    CAS  PubMed  Google Scholar 

  151. Patel HH, Gross ER, Peart JN, Hsu AK, Gross GJ. Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. Am J Physiol Heart Circ Physiol. 2005;288:H445–7.

    CAS  PubMed  Google Scholar 

  152. Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC. Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Am J Physiol. 1999;277:H2425–34.

    CAS  PubMed  Google Scholar 

  153. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, et al. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298:1029–33.

    CAS  PubMed  Google Scholar 

  154. Wang X, Yin C, Xi L, Kukreja RC. Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol. 2004;287:H2070–7.

    CAS  PubMed  Google Scholar 

  155. Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol. 2003;35:339–41.

    CAS  PubMed  Google Scholar 

  156. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res. 2002;55:534–43.

    CAS  PubMed  Google Scholar 

  157. Hausenloy DJ, Yellon DM. Adenosine-induced second window of protection is mediated by inhibition of mitochondrial permeability transition pore opening at the time of reperfusion. Cardiovasc Drugs Ther. 2004;18:79–80.

    CAS  PubMed  Google Scholar 

  158. Rajesh KG, Sasaguri S, Zhitian Z, Suzuki R, Asakai R, Maeda H. Second window of ischemic preconditioning regulates mitochondrial permeability transition pore by enhancing Bcl-2 expression. Cardiovasc Res. 2003;59:297–307.

    CAS  PubMed  Google Scholar 

  159. Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, et al. Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res. 2003;92:741–8.

    CAS  PubMed  Google Scholar 

  160. Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, et al. The late phase of preconditioning and its natural clinical application–gene therapy. Heart Fail Rev. 2007;12:189–99.

    CAS  PubMed  Google Scholar 

  161. Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol. 2008;45:554–66.

    CAS  PubMed  Google Scholar 

  162. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation. 2005;111:1114–20.

    PubMed  Google Scholar 

  163. Kimura M, Ueda K, Goto C, Jitsuiki D, Nishioka K, Umemura T, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27:1403–10.

    CAS  PubMed  Google Scholar 

  164. Kamota T, Li TS, Morikage N, Murakami M, Ohshima M, Kubo M, et al. Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. J Am Coll Cardiol. 2009;53:1814–22.

    CAS  PubMed  Google Scholar 

  165. Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008;79:377–86.

    CAS  PubMed  Google Scholar 

  166. Kudej RK, Shen YT, Peppas AP, Huang CH, Chen W, Yan L, et al. Obligatory role of cardiac nerves and alpha1-adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ Res. 2006;99:1270–6.

    CAS  PubMed  Google Scholar 

  167. Kristiansen SB, Henning O, Kharbanda RK, Nielsen-Kudsk JE, Schmidt MR, Redington AN, et al. Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Physiol Heart Circ Physiol. 2005;288:H1252–6.

    CAS  PubMed  Google Scholar 

  168. Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009;6:419–29.

    PubMed  Google Scholar 

  169. Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 2008;582:4137–42.

    CAS  PubMed  Google Scholar 

  170. Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59:418–58.

    CAS  PubMed  Google Scholar 

  171. Ludman A, Yellon DM, Hausenloy DJ. Cardiac preconditioning for ischaemia: lost in translation. Disease Models & Mechanisms. 2010. In Press.

  172. Szekeres L, Szilvassy Z, Ferdinandy P, Nagy I, Karcsu S, Csati S. Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol. 1997;29:1977–83.

    CAS  PubMed  Google Scholar 

  173. Wang C, Chiari PC, Weihrauch D, Krolikowski JG, Warltier DC, Kersten JR, et al. Gender-specificity of delayed preconditioning by isoflurane in rabbits: potential role of endothelial nitric oxide synthase. Anesth Analg. 2006;103:274–80. table.

    CAS  PubMed  Google Scholar 

  174. Shinmura K, Nagai M, Tamaki K, Bolli R. Gender and aging do not impair opioid-induced late preconditioning in rats. Basic Res Cardiol. 2004;99:46–55.

    CAS  PubMed  Google Scholar 

  175. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of akt phosphorylation. Diabetes. 2005;54:2360–4.

    CAS  PubMed  Google Scholar 

  176. Qi JS, Kam KW, Chen M, Wu S, Wong TM. Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a kappa-opioid receptor agonist during ischaemia and reperfusion in streptozotocin-induced diabetic rats. Diabetologia. 2004;47:214–20.

    CAS  PubMed  Google Scholar 

  177. Negroni JA, Lascano EC, del Valle HF, Crottogini AJ. ATP-sensitive potassium channels do not have a main role in mediating late preconditioning protection against arrhythmias and stunning in conscious sheep. Basic Res Cardiol. 2002;97:55–64.

    CAS  PubMed  Google Scholar 

  178. del Valle HF, Lascano EC, Negroni JA, Crottogini AJ. Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction. Mol Cell Biochem. 2003;249:21–30.

    PubMed  Google Scholar 

  179. Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke. 2004;35:2676–9.

    CAS  PubMed  Google Scholar 

  180. Tang XL, Takano H, Xuan YT, Sato H, Kodani E, Dawn B, et al. Hypercholesterolemia abrogates late preconditioning via a tetrahydrobiopterin-dependent mechanism in conscious rabbits. Circulation. 2005;112:2149–56.

    PubMed  Google Scholar 

  181. Feng J, Lucchinetti E, Fischer G, Zhu M, Zaugg K, Schaub MC, et al. Cardiac remodelling hinders activation of cyclooxygenase-2, diminishing protection by delayed pharmacological preconditioning: role of HIF1 alpha and CREB. Cardiovasc Res. 2008;78:98–107.

    CAS  PubMed  Google Scholar 

  182. Ghosh S, Ng LL, Talwar S, Squire IB, Galinanes M. Cardiotrophin-1 protects the human myocardium from ischemic injury. Comparison with the first and second window of protection by ischemic preconditioning. Cardiovasc Res. 2000;48:440–7.

    CAS  PubMed  Google Scholar 

  183. Ghosh S, Standen NB, Galinanes M. Preconditioning the human myocardium by simulated ischemia: studies on the early and delayed protection. Cardiovasc Res. 2000;45:339–50.

    CAS  PubMed  Google Scholar 

  184. Loubani M, Hassouna A, Galinanes M. Delayed preconditioning of the human myocardium: signal transduction and clinical implications. Cardiovasc Res. 2004;61:600–9.

    CAS  PubMed  Google Scholar 

  185. Tomai F, Perino M, Ghini AS, Crea F, Gaspardone A, Versaci F, et al. Exercise-induced myocardial ischemia triggers the early phase of preconditioning but not the late phase. Am J Cardiol. 1999;83:586–8.

    CAS  PubMed  Google Scholar 

  186. Bilinska M, Rudnicki S, Beresewicz A. Delayed attenuation of myocardial ischemia with repeated exercise in subjects with stable angina: a possible model for the second window of protection? Basic Res Cardiol. 2000;95:418–23.

    CAS  PubMed  Google Scholar 

  187. Jneid H, Chandra M, Alshaher M, Hornung CA, Tang XL, Leesar M, et al. Delayed preconditioning-mimetic actions of nitroglycerin in patients undergoing exercise tolerance tests. Circulation. 2005;111:2565–71.

    CAS  PubMed  Google Scholar 

  188. Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation. 2001;103:2935–41.

    CAS  PubMed  Google Scholar 

  189. Lambiase PD, Edwards RJ, Cusack MR, Bucknall CA, Redwood SR, Marber MS. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment. J Am Coll Cardiol. 2003;41:1174–82.

    PubMed  Google Scholar 

  190. Gori T, Di Stolfo G, Sicuro S, Dragoni S, Lisi M, Forconi S, et al. Nitroglycerin protects the endothelium from ischaemia and reperfusion: human mechanistic insight. Br J Clin Pharmacol. 2007;64:145–50.

    CAS  PubMed  Google Scholar 

  191. Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation. 2004;109:1714–7.

    CAS  PubMed  Google Scholar 

  192. Noda T, Minatoguchi S, Fujii K, Hori M, Ito T, Kanmatsuse K, et al. Evidence for the delayed effect in human ischemic preconditioning: prospective multicenter study for preconditioning in acute myocardial infarction. J Am Coll Cardiol. 1999;34:1966–74.

    CAS  PubMed  Google Scholar 

  193. Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, et al. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol. 2001;38:1007–11.

    CAS  PubMed  Google Scholar 

  194. Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Ueda K, et al. Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction. Am Heart J. 2000;139:881–8.

    CAS  PubMed  Google Scholar 

  195. Vahlhaus C, Neumann J, Luss H, Wenzelburger F, Tjan TD, Hammel D, et al. Ischemic preconditioning by unstable angina reduces the release of CK-MB following CABG and stimulates left ventricular HSP-72 protein expression. J Card Surg. 2005;20:412–9.

    PubMed  Google Scholar 

  196. Wang Y, Yin B, Liu S, Xue S. Cardioprotective effect by tumor necrosis factor-alpha and interleukin-6 through late preconditioning in unstable angina patients. Arch Med Res. 2007;38:80–5.

    CAS  PubMed  Google Scholar 

  197. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370:575–9.

    PubMed  Google Scholar 

  198. Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) study: a prospective, randomized control trial. Circulation. 2009;119:820–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Yellon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausenloy, D.J., Yellon, D.M. The Second Window of Preconditioning (SWOP) Where Are We Now?. Cardiovasc Drugs Ther 24, 235–254 (2010). https://doi.org/10.1007/s10557-010-6237-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6237-9

Key words

Navigation