Skip to main content

Advertisement

Log in

Microbial Community of the Acidogenic Fermentation of Urban Waste: Effect of the Hydrodynamic Cavitation Pre-treatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aims at understanding how the acidogenic fermentation microbial community was impacted by the hydrodynamic cavitation (HC) pre-treatment of the substrates’ mixture, constituted by waste-activated sludge and vegetable waste 1:1 on a TVS basis.

Methods

HC was performed with power = 8 kW, P = 1.4–1.5 bar, Qmixture of 25–30 L/min, 1550–1650 rpm, duration: 30 min. Fermentation tests were conducted on cavitated (CAV) and not cavitated (NCAV) mixture at T = 37 °C inside 4 L reactors in batch mode, then switched to semi-continuous with an OLR of 8 kgTVS m−3 d−1. Microbial community was characterized by 16S rRNA sequencing at the beginning and end of the pseudo-steady-state. Ecological diversity and clustering among the samples were determined by beta diversity, Venn diagram, and non-metric multi-dimensional scaling (NMDS) analysis.

Results

Cavitation was efficient in substrates’ hydrolyzation but resulted in a lower microbial diversity of 3.85 (Shannon Index) and VFAs concentration of 12.9 gCODVFA L−1 in the anaerobically fermented cavitated mixture (AF-CAV), respect to 4.54 and 18.2 gCODVFA L−1 in the anaerobically fermented not cavitated mixture (AF-NCAV), respectively. NMDS analysis showed that AF-CAV and AF-NCAV samples formed two different clusters, with VFAs concentration as the only significant factor explaining their difference (R2 = 1, Pr > r = 0.04167). Functional redundancy among community members probably allowed to maintain a stable VFAs composition despite the microbial community variation observed at the end of the test.

Conclusion

The insights here provided on the effects of HC confirm the fundamental role played by microbial community in acidogenic fermentation processes and underline its importance in evaluating the effect of substrates’ pre-treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

Abbreviations

HC:

Hydrodynamic cavitation

HRT:

Hydraulic retention time

OLR:

Organic loading rate

TS:

Total solids

TVS:

Total volatile solids

UC:

Ultrasound cavitation

VFAs:

Volatile fatty acids

WAS:

Waste-activated sludge

NMDS:

Non-metric multi-dimensional scaling

References

  1. Global Footprint Network: Earth overshoot day (2023). https://www.overshootday.org/

  2. Costanza, R., Fioramonti, L., Kubiszewski, I.: The UN sustainable development goals and the dynamics of well-being. Front. Ecol. Environ. 14, 59 (2016)

    Article  Google Scholar 

  3. Akinsemolu, A.A.: The role of microorganisms in achieving the sustainable development goals. J. Clean. Prod. 182, 139–155 (2018)

    Article  Google Scholar 

  4. Ramos-Suarez, M., Zhang, Y., Outram, V.: Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev. Environ. Sci. Biotechnol. 20, 439–478 (2021)

    Article  Google Scholar 

  5. Atasoy, M., Owusu-Agyeman, I., Plaza, E., Cetecioglu, Z.: Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour. Technol. 268, 773–786 (2018)

    Article  Google Scholar 

  6. Lytras, G., Lytras, C., Mathioudakis, D., Papadopoulou, K., Lyberatos, G.: Food waste valorization based on anaerobic digestion. Waste Biomass Val. 12, 1677–1697 (2021)

    Article  Google Scholar 

  7. Battista, F., Frison, N., Pavan, P., et al.: Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. J. Chem. Technol. Biotechnol. 95, 328–338 (2020)

    Article  Google Scholar 

  8. Francini, G., Lombardi, L., Freire, F., Pecorini, I., Marques, P.: Environmental and cost life cycle analysis of different recovery processes of organic fraction of municipal solid waste and sewage sludge. Waste Biomass Val. 10, 3613–3634 (2019)

    Article  Google Scholar 

  9. Vidal-Antich, C., Perez-Esteban, N., Astals, S., Peces, M., Mata-Alvarez, J., Dosta, J.: Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Sci. Total Environ. 757, 143763 (2021)

    Article  Google Scholar 

  10. Fang, W., Zhang, X., Zhang, P., Wan, J., Guo, H., Ghasimi, D.S.M., Morera, X.C., Zhang, T.: Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. J. Environ. Sci. 87, 93–111 (2020)

    Article  Google Scholar 

  11. Tonanzi, B., Gallipoli, A., Annesini, M.C., La, P.C., Gianico, A., Braguglia, C.M.: Pre-treatments and anaerobic hydrolysis as strategical key steps for resource recovery from sludge: the role of disintegration degree in metals leaching. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2020.104649

    Article  Google Scholar 

  12. Bhat, A.P., Gogate, P.R.: Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: a review. J. Environ. Chem. Eng. 9, 104743 (2021)

    Article  Google Scholar 

  13. Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V.K., Pandit, A.B.: Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Eng. 33, 433–468 (2017)

    Article  Google Scholar 

  14. Dauptain, K., Trably, E., Santa-Catalina, G., Bernet, N., Carrere, H.: Role of indigenous bacteria in dark fermentation of organic substrates. Bioresour. Technol. 313, 123665 (2020)

    Article  Google Scholar 

  15. Liu, N., Jiang, J., Yan, F., Gao, Y., Meng, Y., Aihemaiti, A., Ju, T.: Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment. J. Environ. Manag. 217, 797–804 (2018)

    Article  Google Scholar 

  16. Yang, G., Wang, J.: Biohydrogen production from waste activated sludge pretreated by combining sodium citrate with ultrasonic: energy conversion and microbial community. Energy Convers. Manag. 225, 113436 (2020)

    Article  Google Scholar 

  17. Cesaro, A., Naddeo, V., Amodio, V., Belgiorno, V.: Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem 19, 596–600 (2012)

    Article  Google Scholar 

  18. Lanfranchi, A., Tassinato, G., Valentino, F., Martinez, G.A., Jones, E., Gioia, C., Bertin, L., Cavinato, C.: Hydrodynamic cavitation pre-treatment of urban waste: integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes. Chemosphere 301, 134624 (2022)

    Article  Google Scholar 

  19. Cabrol, L., Marone, A., Tapia-Venegas, E., Steyer, J.-P., Ruiz-Filippi, G., Trably, E.: Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 043, 158–181 (2017)

    Article  Google Scholar 

  20. Luo, L., Sriram, S., Johnravindar, D., Louis Philippe Martin, T., Wong, J.W.C., Pradhan, N.: Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour. Technol. 358, 127404 (2022)

    Article  Google Scholar 

  21. Moretto, G., Valentino, F., Pavan, P., Majone, M., Bolzonella, D.: Optimization of urban waste fermentation for volatile fatty acids production. Waste Manag. 92, 21–29 (2019)

    Article  Google Scholar 

  22. Strazzera, G., Battista, F., Tonanzi, B., Rossetti, S., Bolzonella, D.: Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environ. Technol. Innov. 23, 101562 (2021)

    Article  Google Scholar 

  23. Greses, S., Tomás-Pejó, E., Gónzalez-Fernández, C.: Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Bioresour. Technol. 297, 122486 (2020)

    Article  Google Scholar 

  24. González-Fernández, C., García-Encina, P.A.: Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass Bioenerg. 33, 1065–1069 (2009)

    Article  Google Scholar 

  25. Parada, A.E., Needham, D.M., Fuhrman, J.A.: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016)

    Article  Google Scholar 

  26. Apprill, A., Mcnally, S., Parsons, R., Weber, L.: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015)

    Article  Google Scholar 

  27. Bolyen, E., Rideout, J.R., Dillon, M.R., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019)

    Article  Google Scholar 

  28. Chao, A.: Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984)

    MathSciNet  Google Scholar 

  29. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. XXVII, 382–423 (1948)

    MathSciNet  Google Scholar 

  30. Pielou, E.C.: Ecological Diversity. Wiley, New York (1975)

    Google Scholar 

  31. APAT-IRSA/CNR: Metodologie analitiche per il controllo della qualità delle acque. Poligrafica e Zecca dello Stato Roma (2003)

  32. APHA/AWWA/WEF: Standard Methods for the Examination of Water and Wastewater, 23rd ed. (2017)

  33. Wu, Q.L., Guo, W.Q., Zheng, H.S., Luo, H.C., Feng, X.C., Yin, R.L., Ren, N.Q.: Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses. Bioresour. Technol. 216, 653–660 (2016)

    Article  Google Scholar 

  34. Strazzera, G., Battista, F., Andreolli, M., Menini, M., Bolzonella, D., Lampis, S.: Influence of different household food wastes fractions on volatile fatty acids production by anaerobic fermentation. Bioresour. Technol. 335, 125289 (2021)

    Article  Google Scholar 

  35. Llamas, M., Magdalena, J.A., Greses, S., Tomás-Pejó, E., González-Fernández, C.: Insights on the microbial communities developed during the anaerobic fermentation of raw and pretreated microalgae biomass. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.127942

    Article  Google Scholar 

  36. Le, N.T., Julcour-Lebigue, C., Delmas, H.: An executive review of sludge pretreatment by sonication. J. Environ. Sci. (China) 37, 139–153 (2015)

    Article  Google Scholar 

  37. Lehne, G., Müller, A., Schwedes, J.: Mechanical disintegration of sewage sludge. Water Sci. Technol. 43, 19–26 (2001)

    Article  Google Scholar 

  38. Chu, C.P., Chang, B.V., Liao, G.S., Jean, D.S., Lee, D.J.: Observations on changes in ultrasonically treated waste-activated sludge. Water Res. 35, 1038–1046 (2001)

    Article  Google Scholar 

  39. Zhang, P., Zhang, G., Wang, W.: Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour. Technol. 98, 207–210 (2007)

    Article  Google Scholar 

  40. Zhang, L., Loh, K.C., Dai, Y., Tong, Y.W.: Acidogenic fermentation of food waste for production of volatile fatty acids: bacterial community analysis and semi-continuous operation. Waste Manag. 109, 75–84 (2020)

    Article  Google Scholar 

  41. Yin, J., Yu, X., Zhang, Y., Shen, D., Wang, M., Long, Y., Chen, T.: Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: effect of redox potential and inoculum. Bioresour. Technol. 216, 996–1003 (2016)

    Article  Google Scholar 

  42. Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C.: Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresour. Technol. 291, 121817 (2019)

    Article  Google Scholar 

  43. Gao, X., Zhang, Q., Zhu, H.: High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation. Bioresour. Technol. 282, 197–201 (2019)

    Article  Google Scholar 

  44. Lim, J.W., Chiam, J.A., Wang, J.Y.: Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 171, 132–138 (2014)

    Article  Google Scholar 

  45. Mariakakis, I., Bischoff, P., Krampe, J., Meyer, C., Steinmetz, H.: Effect of organic loading rate and solids retention time on microbial population during bio-hydrogen production by dark fermentation in large lab-scale. Int. J. Hydrog. Energy 36, 10690–10700 (2011)

    Article  Google Scholar 

  46. Cohen, A., Distel, B., Van Deursen, A., Breure, A.M., Van Andel, J.G., Andel, V.: Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply. Antonie Van Leeuwenhoek 51, 179–192 (1985)

    Article  Google Scholar 

  47. Castelló, E., García y Santos, C., Iglesias, T., Paolino, G., Wenzel, J., Borzacconi, L., Etchebehere, C.: Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int. J. Hydrog. Energy 34, 5674–5682 (2009)

    Article  Google Scholar 

  48. Lan, G.Q., Ho, Y.W., Abdullah, N.: Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia. Int. J. Syst. Evol. Microbiol. 52, 713–718 (2002)

    Google Scholar 

  49. Cheng, W., Chen, H., Yan, S.H., Su, J.: Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values. World J. Microbiol. Biotechnol. 30, 2387–2395 (2014)

    Article  Google Scholar 

  50. Weimer, P.J., Moen, G.N.: Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl. Microb. Cell Physiol. (2022). https://doi.org/10.1007/s00253-012-4645-4

    Article  Google Scholar 

  51. Moreno-Andrade, I., Moreno, G., Kumar, G., Buitrón, G.: Biohydrogen production from industrial wastewaters. Water Sci. Technol. 71, 105–110 (2015)

    Article  Google Scholar 

  52. Cabrol, L., Marone, A., Tapia-Venegas, E., Steyer, J.P., Ruiz-Filippi, G., Trably, E.: Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 41, 158–181 (2017)

    Article  Google Scholar 

  53. Feng, K., Li, H., Zheng, C.: Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 270, 180–188 (2018)

    Article  Google Scholar 

  54. Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., Sghir, A.: Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3, 700–714 (2009)

    Article  Google Scholar 

  55. Debroas, D., Blanchart, G.: Interactions between proteolytic and cellulolytic rumen bacteria during hydrolysis of plant cell wall protein. Reprod. Nutr. Dev. 33, 283–288 (1993)

    Article  Google Scholar 

  56. Muszyński, A., Tabernacka, A., Miłobedzka, A.: Long-term dynamics of the microbial community in a full-scale wastewater treatment plant. Int. Biodeterior. Biodegrad. 100, 44–51 (2015)

    Article  Google Scholar 

  57. Tang, J., Wang, X.C., Hu, Y., Pu, Y., Huang, J., Hao Ngo, H., Zeng, Y., Li, Y.: Nitrogen removal enhancement using lactic acid fermentation products from food waste as external carbon sources: performance and microbial communities. Bioresour. Technol. 256, 259–268 (2018)

    Article  Google Scholar 

  58. Hu, H., Ma, S., Zhang, X., Ren, H.: Characteristics of dissolved organic nitrogen in effluent from a biological nitrogen removal process using sludge alkaline fermentation liquid as an external carbon source. Water Res. 176, 115741 (2020)

    Article  Google Scholar 

  59. Ping, Q., Lu, X., Li, Y., Mannina, G.: Effect of complexing agents on phosphorus release from chemical-enhanced phosphorus removal sludge during anaerobic fermentation. Bioresour. Technol. 301, 122745 (2020)

    Article  Google Scholar 

  60. Oren, A.: The Family Rhodocyclaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds.) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 4th edn., pp. 976–994. Springer, Berlin (2014)

    Google Scholar 

  61. Mao, Y., Xia, Y., Zhang, T.: Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour. Technol. 128, 703–710 (2013)

    Article  Google Scholar 

  62. Foss, S., Harder, J.: Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol and nitrate). Syst. Appl. Microbiol. 21, 365–373 (1998)

    Article  Google Scholar 

  63. Liu, B., Zhang, F., Feng, X., Liu, Y., Yan, X., Zhang, X., Wang, L., Zhao, L.: Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiol. Ecol. (2005). https://doi.org/10.1111/j.1574.6941.2005.00033.x

    Article  Google Scholar 

  64. Nastro, R.A., Falcucci, G., Minutillo, M., Jannelli, E.: Microbial fuel cells in solid waste valorization: trends and applications. Model. Trends Solid Hazard. Waste Manag. 2017, 159–171 (2017)

    Article  Google Scholar 

  65. Geesink, P., Taubert, M., Jehmlich, N., von Bergen, M., Küsel, K.: Bacterial necromass is rapidly metabolized by heterotrophic bacteria and supports multiple trophic levels of the groundwater microbiome. Microbiol. Spectr. (2022). https://doi.org/10.1128/spectrum.00437-22

    Article  Google Scholar 

  66. Sydow, A., Krieg, T., Mayer, F., Schrader, J., Holtmann, D.: Electroactive bacteria—molecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol. 98, 8481–8495 (2014)

    Article  Google Scholar 

  67. Olsen, I., Johnson, J.L., Moore, L.V.H., Moore, W.E.C.: Lactobacillus uli sp. nov. and Lactobacillus rimae sp. nov. from the human gingival crevice and emended descriptions of Lactobacillus minutus and Streptococcus parvulus. Int. J. Syst. Bacteriol. 41, 261–266 (1991)

    Article  Google Scholar 

  68. Li, S.L., Lin, J.S., Wang, Y.H., Lee, Z.K., Kuo, S.C., Tseng, I.C., Cheng, S.S.: Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses. Bioresour. Technol. 102, 8682–8687 (2011)

    Article  Google Scholar 

  69. Weimer, P.J.: Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front. Microbiol. (2015). https://doi.org/10.3389/fmicb.2015.00296

    Article  Google Scholar 

Download references

Acknowledgements

The Green Propulsion Laboratory of Veritas S.p.A. is gratefully acknowledged for its hospitality.

Funding

This work was supported by the project “Ecopolimeri” (ID 10217222) in the frame of the POR-FESR 2014–2020 program of Regione Veneto.

Author information

Authors and Affiliations

Authors

Contributions

AL: Investigation, Data curation, Formal analysis, Writing—original draft. BC: Formal analysis, Writing—review and editing. GT: Resources, Funding acquisition. CC: Supervision, Conceptualization, Resources, Writing—review and editing.

Corresponding author

Correspondence to Alice Lanfranchi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanfranchi, A., Chouaia, B., Tassinato, G. et al. Microbial Community of the Acidogenic Fermentation of Urban Waste: Effect of the Hydrodynamic Cavitation Pre-treatment. Waste Biomass Valor 15, 1629–1639 (2024). https://doi.org/10.1007/s12649-023-02196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02196-3

Keywords

Navigation