Skip to main content
Log in

Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: Changes induced by discontinuous or low-rate feed supply

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A mineral salts medium containing 1% (w/v) glucose providing carbon-limited growth conditions was subjected to anaerobic acidogenesis by mixed populations of bacteria in chemostat cultures. The formation of butyrate was shown to be dependent on the presence of saccharolytic anaerobic sporeformers in the acid-forming population. By the use of pasteurized activated sludge as an inoculum a culture was obtained consisting solely of anaerobic sporeformers that gave rise to the formation of butyrate, acetate, hydrogen and carbon dioxide as the main fermentation products. No formation of propionate could be detected. In this culture, the role of sporulation was investigated by applying periods of starvation and a single-step lowering of dilution rate (shift-down). In an experiment using a mineral salts medium supplemented with 1% (w/v) glucose and 0.5% (w/v) casein hydrolysate formation of refractile forespores as well as cell lysis could be demonstrated after 6 h starvation.

In mixed cultures, initially inoculated with non-pasteurized activated sludge, a regular interruption of feed supply for 1 h per day resulted in selection of non-sporulatiog anaerobes. The fermentation pattern changed to a production of propionate and acetate, with a concomitant reduction of gas production. Similar results were obtained with shift-down in dilution rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayen, H., Frehel, C., Ryter, A. andSebald, M. 1967. Étude cytologique de la sporulation chezClostridium histolyticum. Souche sporogène et mutants de sporulation. -Ann. Inst. Pasteur, Paris113: 163–173.

    CAS  Google Scholar 

  • Breure, A. M. andVan Andel, J. G. 1984. Hydrolysis and acidogenic fermentation of a protein, gelatin, in an anaerobic continuous culture. -Appl. Microbiol. Biotechnol.20: 40–45.

    Article  CAS  Google Scholar 

  • Chynoweth, D. P. andMah, R. A. 1977. Bacterial populations and end products during anaerobic sludge fermentation of glucose. -J. Water Pollut. Control Fed.49: 405–412.

    CAS  Google Scholar 

  • Cohen, A. 1982. Optimization of anaerobic digestion of soluble carbohydrate containing wastewater by phase separation. -Ph. D. Thesis, University of Amsterdam.

  • Cohen, A., Breure, A. M., Van Andel, J. G. andVan Deursen, A. 1980. Influence of phase separation on the anaerobic digestion of glucose-I Maximum COD-turnover rate during continuous operation. -Water Res.14: 1439–1448.

    Article  CAS  Google Scholar 

  • Cohen, A., Breure, A. M., Van Andel, J. G. andVan Deursen, A. 1982. Influence of phase separation on the anaerobic digestion of glucose — II Stability, and kinetic responses to shock loadings. -Water Res.16: 449–455.

    Article  CAS  Google Scholar 

  • Cohen, A., Van Gemert, J. M., Zoetemeyer, R. J. andBreure, A. M. 1984. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters. -Process Biochem.19: 228–232.

    CAS  Google Scholar 

  • Cohen, A., Zoetemeyer, R. J., Van Deursen, A. andVan Andel, J. G. 1979. Anaerobic digestion of glucose with separated acid production and methane formation. -Water Res.13: 571–580.

    Article  CAS  Google Scholar 

  • Cooney, P. H., Whiteman, P. F. andFreese, E. 1977. Media dependence of commitment inBacillus subtilis. -J. Bacteriol.129: 901–907.

    CAS  PubMed  Google Scholar 

  • Dawes, I. W., Kay, D. andMandelstam, J. 1969. Sporulation inBacillus subtilis. Establishment of a time scale for the morphological events. -J. Gen. Microbiol.56: 171–179.

    CAS  PubMed  Google Scholar 

  • Dawes, I. W. andMandelstam, J. 1970. Sporulation ofBacillus subtilis in continuous culture. -J. Bacteriol.103: 529–535.

    CAS  PubMed  Google Scholar 

  • Dawes, I. W. andThornley, J. H. M. 1970. Sporulation inBacillus subtilis. Theoretical and experimental studies in continuous culture systems. -J. Gen. Microbiol.62: 49–66.

    CAS  PubMed  Google Scholar 

  • Day, L. E. andCostilow, R. N. 1964. Physiology of the sporulation process inClostridium botulinum I. Correlation of morphological changes with catabolic activities, synthesis of dipicolinic acid, and development of heat resistance. -J. Bacteriol.88: 690–694.

    CAS  PubMed  Google Scholar 

  • Evans, C. G. T., Herbert, D. andTempest, D. W. 1970. The continuous cultivation of microorganisms. 2. Construction of a chemostat. p. 277–327.In J. R. Norris and D. W. Ribbons (eds), Methods in Microbiology, Vol. 2. -Academic Press, London.

    Google Scholar 

  • Fitz-James, P. andYoung, E. 1969. Morphology of sporulation. p. 39–72.In G. W. Gould and A. Hurst (eds), The Bacterial Spore. -Academic Press, London.

    Google Scholar 

  • Foster, J. W. 1956. Morphogenesis in bacteria: some aspects of spore formation. -Q. Rev. Biol.31: 102–118.

    Article  CAS  PubMed  Google Scholar 

  • Freese, E., Klofat, W. andGalliers, E. 1970. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. -Biochim. Biophys. Acta222: 265–289.

    CAS  PubMed  Google Scholar 

  • Freese, E. B., Cooney, P. andFreese, E. 1975. Conditions controlling commitment of differentiation inBacillus megaterium. -Proc. Natl Acad. Sci. USA72: 4037–4041.

    CAS  PubMed  Google Scholar 

  • Freese, E. B. andFreese, E. 1977. The influence of the developing bacterial spore on the mothercell. -Dev. Biol.60: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Grelet, N. 1951. Le déterminisme de la sporulation deBacillus megatherium I. L'effet de l'épuisement de l'aliment carboné en milieu synthétique. -Ann. Inst. Pasteur, Paris81: 430–440.

    CAS  Google Scholar 

  • Grelet, N. 1957. Growth limitation and sporulation. -J. Appl. Bacteriol.20: 315–324.

    Google Scholar 

  • Hardwick, W. A. andFoster, J. W. 1952. On the nature of sporogenesis in some aerobic bacteria. -J. Gen. Physiol.35: 907–927.

    Article  CAS  PubMed  Google Scholar 

  • Hobson, P. N. 1965. Continuous culture of some anaerobic and facultatively anaerobic rumen bactteria. -J. Gen. Microbiol.38: 167–180.

    CAS  PubMed  Google Scholar 

  • Hobson, P. N., Bousfield, S. andSummers, R. 1974. Anaerobic digestion of organic matter. -Crit. Rev. Environ. Control4: 131–191.

    CAS  Google Scholar 

  • Hobson, P. N. andSummers, R. 1972. ATP pool and growth yield inSelenomonas ruminantium. -J. Gen. Microbiol.70: 351–360.

    CAS  Google Scholar 

  • Hsu, E. J. andOrdal, Z. J. 1969. Sporulation ofClostridium thermosaccharolyticum under conditions of restricted growth. -J. Bacteriol.97: 1511–1512.

    CAS  PubMed  Google Scholar 

  • Ierusalimskii, N. D. andRukina, E. A. 1959. A study of sporulation conditions in bacteria by the constant flow microculture method. -Microbiology (USSR)28: 745–750.

    Google Scholar 

  • Kanegasaki, S. andTakahashi, H. 1967. Function of growth factors for rumen microorganisms 1. Nutritional characteristics ofSelenomonas ruminantium. -J. Bacteriol.93: 456–463.

    CAS  PubMed  Google Scholar 

  • Kingsley, V. V. andHoeniger, J. F. M. 1973. Growth, structure, and classification ofSelenomonas. -Bacteriol. Rev.37: 479–521.

    CAS  PubMed  Google Scholar 

  • Levisohn, S. andAronson, A. I. 1967. Regulation of extracellular protease production inBacilllus cereus. -J. Bacteriol.93: 1023–1030.

    CAS  PubMed  Google Scholar 

  • Mahr, I. 1969. Untersuchungen über die Rolle der niederen Fettsäuren beim anaeroben Faulprozess and Einblicke in seine Biozönose. -Water Res.3: 507–517.

    Article  CAS  Google Scholar 

  • Murrell, W. G. 1967. The biochemistry of the bacterial endospore. -Adv. Microb. Physiol.1: 133–251.

    CAS  Google Scholar 

  • Pheil, C. G. andOrdal, Z. J. 1967. Sporulation of the ‘thermophilic anaerobes’. -Appl. Microbiol.15: 893–898.

    CAS  PubMed  Google Scholar 

  • Schaeffer, P. 1969. Sporulation and the production of antibiotics, exoenzymes, and exotoxins. -Bacteriol. Rev.33: 48–71.

    CAS  PubMed  Google Scholar 

  • Schaeffer, P., Millet, J. andAubert, J. P. 1965. Catabolic repression of bacterial sporulation. -Proc. Natl Acad. Sci. USA54: 704–711.

    CAS  PubMed  Google Scholar 

  • Sterlini, J. M. andMandelstam, J. 1969. Commitment to sporulation inBacillus subtilis and its relationship to development of actinomycin resistance. -Biochem. J.113: 29–37.

    CAS  PubMed  Google Scholar 

  • Szulmajster, J. 1973. Initiation of bacterial sporogenesis. -Symp. Soc. Gen. Microbiol.23: 45–83.

    CAS  Google Scholar 

  • Warren, S. C. 1968. Sporulation inBacillus subtilis. Biochemical changes. -Biochem. J.109: 811–818.

    CAS  PubMed  Google Scholar 

  • Wood, W. A. 1961. Fermentation of carbohydrates and related compounds. p. 59–149.In I. C. Gunsalus and R. Y. Stanier (eds), The Bacteria. A Treatise on Structure and Function, Vol. 2: Metabolism. -Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., Distel, B., van Deursen, A. et al. Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: Changes induced by discontinuous or low-rate feed supply. Antonie van Leeuwenhoek 51, 179–192 (1985). https://doi.org/10.1007/BF02310011

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02310011

Keywords

Navigation