Skip to main content
Log in

Food Waste Valorization Based on Anaerobic Digestion

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The rapid urbanization that took place in the last 60 years has led to a dramatic increase in the generation of Municipal Solid Waste (MSW). The biodegradable fraction of MSW mainly consists of food waste (FW) and corresponds to about 50% of the total MSW. The disposal of FW in the environment has become a significant challenge. On the other hand, FW is an excellent substrate for anaerobic digestion (AD).

Methods

This manuscript reviews the different AD technologies for the treatment of FW. Different types of bioreactors and pretreatment methods used to enhance methane production through AD of FW are discussed. The current review gives special emphasis on the methods for biogas upgrading and on technologies for FW digestate valorization.

Results

Food waste valorization through anaerobic digestion offers a wide variety of options in all process steps. From the pre-treatment of the feedstock and the selection of the suitable anaerobic digestion technology to the configuration of the process based on the desired products and the valorization of the generated digestate, the design of an integrated anaerobic digestion plant is a challenging task, which necessitates a systematic design.

Conclusion

A systematic approach is necessary for FW valorization. The simple single-stage AD process leads to underutilization of the feedstock. There are plenty of available technologies that could be combined for the development of an integrated biorefinery that will be optimized in terms of FW valorization towards the production of biofuels and high-added value products, while introducing a circularity in the nutrients contained in the FW. FW-to-biofuel conversion technologies are high Technology Readiness Level (TRL—9) technologies and anaerobic digestion is applied worldwide at commercial scale.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

MSW:

Municipal solid waste

CHP:

Combined heat and power

FW:

Food waste

LCC:

Life cycle cost

IC:

Investment cost

GHG:

Greenhouse gas

VFA:

Volatile fatty acids

PABR:

Periodic anaerobic baffled reactor

LCFA:

Long chain fatty acids

iMBR:

Anaerobic immersed membrane bioreactor

TPASBR:

Temperature-phased anaerobic sequencing batch reactor

MEA:

Monoethanolamine

DEA:

Diethanolamine

MDEA:

Methyldiethanolamine

OC:

Operation cost

CSTR:

Continuous stirred tank reactor

MC:

Maintenance cost

HRT:

Hydraulic retention time

MEC:

Microbial electrolysis cells

MFC:

Microbial fuel cells

ORL:

Organic loading rate

BES:

Bioelectrochemical systems

EU:

European Union

TPPB:

Two-phase pressurized biofilm system

UASB:

Upflow anaerobic sludge blanket

GAMAR:

Gas-membrane absorption anaerobic reactor

DGA:

Diglycolamine

TEA:

Triethanolamine

PZ:

Piperazine

References

  1. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R.: Meybeck, A: Global food losses and food waste: extent, causes and prevention Save Food. FAO, Rome (2011)

    Google Scholar 

  2. Food and Agriculture Organization (FAO): Food Wastage Footprint: Impacts on Natural Resources. FAO, Paris (2013)

    Google Scholar 

  3. Melikoglu, M., Lin, C.S.K., Webb, C.: Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Cent. Eur. J. Eng. 3, 157–164 (2013). https://doi.org/10.2478/s13531-012-0058-5

    Article  Google Scholar 

  4. Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J.P., Delgenès, J.P., Escudié, R.: Food waste valorization via anaerobic processes: a review. Rev. Environ. Sci. Biotechnol. 15, 499–547 (2016). https://doi.org/10.1007/s11157-016-9405-y

    Article  Google Scholar 

  5. San Martin, D., Ramos, S., Zufía, J.: Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 198, 68–74 (2016). https://doi.org/10.1016/j.foodchem.2015.11.035

    Article  Google Scholar 

  6. Eriksson, M., Strid, I., Hansson, P.A.: Carbon footprint of food waste management options in the waste hierarchy—a Swedish case study. J. Clean. Prod. 93, 115–125 (2015). https://doi.org/10.1016/j.jclepro.2015.01.026

    Article  Google Scholar 

  7. Ellen MacArthur Foundation: Urban biocycles. Ellen MacArthur Foundation, Cowes (2017)

    Google Scholar 

  8. Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R.: Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 38, 399–408 (2015). https://doi.org/10.1016/j.wasman.2014.12.004

    Article  Google Scholar 

  9. McKinsey Global Institute: McKinsey Global Institute McKinsey Sustainability & Resource Productivity Practice. The McKinsey Global Institute, New York (2011)

    Google Scholar 

  10. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98, 929–935 (2007). https://doi.org/10.1016/j.biortech.2006.02.039

    Article  Google Scholar 

  11. Bolzonella, D., Battista, F., Cavinato, C., Gottardo, M., Micolucci, F., Lyberatos, G., Pavan, P.: Recent developments in biohythane production from household food wastes: a review. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.02.092

    Article  Google Scholar 

  12. Mao, C., Feng, Y., Wang, X., Ren, G.: Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  13. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014). https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  14. Michalopoulos, I., Mathioudakis, D., Premetis, I., Michalakidi, S., Papadopoulou, K., Lyberatos, G.: Anaerobic co-digestion in a pilot-scale periodic anaerobic baffled reactor (PABR) and composting of animal by-products and whey. Waste Biomass Valorization. (2017). https://doi.org/10.1007/s12649-017-0155-z

    Article  Google Scholar 

  15. Michalopoulos, I., Lytras, G.M., Mathioudakis, D., Lytras, C., Goumenos, A., Zacharopoulos, I., Papadopoulou, K., Lyberatos, G.: Hydrogen and methane production from food residue biomass product (FORBI). Waste Biomass Valorization (2019). https://doi.org/10.1007/s12649-018-00550-4

    Article  Google Scholar 

  16. Salemdeeb, R., Ermgassen, E.K.H.J., Kim, M.H., Balmford, A., Al-Tabbaa, A.: Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J. Clean. Prod. 140, 871–880 (2017). https://doi.org/10.1016/j.jclepro.2016.05.049

    Article  Google Scholar 

  17. Kougias, P.G., Angelidaki, I.: Biogas and its opportunities—a review Keywords. Front. Environ. Sci. 12, 1–22 (2018)

    Google Scholar 

  18. Carlsson, M., Naroznova, I., Moller, J., Scheutz, C., Lagerkvist, A.: Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems. Resour. Conserv. Recycl. 102, 58–66 (2015). https://doi.org/10.1016/j.resconrec.2015.06.012

    Article  Google Scholar 

  19. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y.: Anaerobic digestion of food waste—challenges and opportunities. Bioresour. Technol. 247, 1047–1058 (2018). https://doi.org/10.1016/j.biortech.2017.09.020

    Article  Google Scholar 

  20. European Biogas Association: EBA Statistical Report. European Biogas Association, Brussels (2018)

    Google Scholar 

  21. Scarlat, N., Dallemand, J.F., Fahl, F.: Biogas: developments and perspectives in Europe. Renew. Energy. 129, 457–472 (2018). https://doi.org/10.1016/j.renene.2018.03.006

    Article  Google Scholar 

  22. Wolfgang, U.: Chapter 16 - Biomethane injection into natural gas networks. In: The Biogas Handbook. Science, Production and Applications, pp. 378–403. Woodhead Publishing Series in Energy (2013). https://doi.org/10.1533/9780857097415.3.378

  23. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015). https://doi.org/10.1016/j.rser.2015.06.029

    Article  Google Scholar 

  24. Stafford, W., Lotter, A., Brent, A., Von, G.: WIDER working paper 2017/87 Biofuels technology A look forward. (2017)

  25. Ardolino, F., Colaleo, G., Arena, U.: The cleaner option for energy production Giuseppina Colaleo: data curation; visualization. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.121908

    Article  Google Scholar 

  26. Kleerebezem, R., Joosse, B., Rozendal, R., Van Loosdrecht, M.C.M.: Anaerobic digestion without biogas? Rev. Environ. Sci. Biotechnol. 14, 787–801 (2015). https://doi.org/10.1007/s11157-015-9374-6

    Article  Google Scholar 

  27. Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F.: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res (2020). https://doi.org/10.1016/j.watres.2019.115371

    Article  Google Scholar 

  28. Commission, E.: Closing the Loop—An EU Action Plan for the Circular Economy. European Commission, Brussels (2015)

    Google Scholar 

  29. Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour. Technol. 247, 1069–1076 (2018). https://doi.org/10.1016/j.biortech.2017.09.109

    Article  Google Scholar 

  30. Lee, W., Park, S., Cui, F., Kim, M.: Optimizing pre-treatment conditions for anaerobic co-digestion of food waste and sewage sludge. J. Environ. Manag. 249, 109397 (2019). https://doi.org/10.1016/j.jenvman.2019.109397

    Article  Google Scholar 

  31. Quiroga, G., Castrillón, L., Fernández-Nava, Y., Marañón, E., Negral, L., Rodríguez-Iglesias, J., Ormaechea, P.: Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresour. Technol. 154, 74–79 (2014). https://doi.org/10.1016/j.biortech.2013.11.096

    Article  Google Scholar 

  32. Uçkun Kiran, E., Trzcinski, A.P., Liu, Y.: Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour. Technol. 183, 47–52 (2015). https://doi.org/10.1016/j.biortech.2015.02.033

    Article  Google Scholar 

  33. Zou, L., Ma, C., Liu, J., Li, M., Ye, M., Qian, G.: Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement. Bioresour. Technol. 222, 82–88 (2016). https://doi.org/10.1016/j.biortech.2016.09.104

    Article  Google Scholar 

  34. Li, Y., Jin, Y.: Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew. Energy. 77, 550–557 (2015). https://doi.org/10.1016/j.renene.2014.12.056

    Article  Google Scholar 

  35. Deepanraj, B., Sivasubramanian, V., Jayaraj, S.: Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int. J. Hydrog. Energy. 42, 26522–26528 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.178

    Article  Google Scholar 

  36. Salem, A.H., Mietzel, T., Brunstermann, R., Widmann, R.: Two-stage anaerobic fermentation process for bio-hydrogen and bio-methane production from pre-treated organic wastes. Bioresour. Technol. 265, 399–406 (2018). https://doi.org/10.1016/j.biortech.2018.06.017

    Article  Google Scholar 

  37. Li, D., Sun, Y., Guo, Y., Yuan, Z., Wang, Y., Zhen, F.: Continuous anaerobic digestion of food waste and design of digester with lipid removal. Environ. Technol. (United Kingdom) 34, 2135–2143 (2013). https://doi.org/10.1080/09593330.2013.808237

    Article  Google Scholar 

  38. Mlaik, N., Khoufi, S., Hamza, M., Masmoudi, M.A., Sayadi, S.: Enzymatic pre-hydrolysis of organic fraction of municipal solid waste to enhance anaerobic digestion. Biomass Bioenerg. 127, 105286 (2019). https://doi.org/10.1016/j.biombioe.2019.105286

    Article  Google Scholar 

  39. Brémond, U., Buyer, R.D., Steyer, J., Bernet, N.: Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale. Renew. Sustain. Energy Rev. 90, 583–604 (2018). https://doi.org/10.1016/j.rser.2018.03.103

    Article  Google Scholar 

  40. Park, J.G., Lee, B., Kwon, H.J., Park, H.R., Jun, H.B.: Effects of a novel auxiliary bio-electrochemical reactor on methane production from highly concentrated food waste in an anaerobic digestion reactor. Chemosphere 220, 403–411 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.169

    Article  Google Scholar 

  41. Mathioudakis, D., Lytras, G.-M., Fotiou, D., Lytras, C., Papadopoulou, K., Lyberatos, G.: Valorization of a Food Residue Biomass product in a two-stage anaerobic digestion system for the production of hythane. In: 6th International Conference on Sustainable Solid Waste Management. Naxos, Greece (2018)

  42. Shin, H.S., Han, S.K., Song, Y.C., Lee, C.Y.: Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res. 35, 3441–3447 (2001). https://doi.org/10.1016/S0043-1354(01)00041-0

    Article  Google Scholar 

  43. Wainaina, S., Parchami, M., Mahboubi, A., Horváth, I.S., Taherzadeh, M.J.: Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 274, 329–334 (2019). https://doi.org/10.1016/j.biortech.2018.11.104

    Article  Google Scholar 

  44. Li, Y., Liu, H., Yan, F., Su, D., Wang, Y., Zhou, H.: High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system. Bioresour. Technol. 224, 56–62 (2017). https://doi.org/10.1016/j.biortech.2016.10.070

    Article  Google Scholar 

  45. Elreedy, A., Tawfik, A., Kubota, K., Shimada, Y., Harada, H.: Hythane (H2+ CH4) production from petrochemical wastewater containing mono-ethylene glycol via stepped anaerobic baffled reactor. Int. Biodeterior. Biodegrad. 105, 252–261 (2015). https://doi.org/10.1016/j.ibiod.2015.09.015

    Article  Google Scholar 

  46. Kim, H.W., Nam, J.Y., Shin, H.S.: A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour. Technol. 102, 7272–7279 (2011). https://doi.org/10.1016/j.biortech.2011.04.088

    Article  Google Scholar 

  47. Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., García, M.M.: Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 32, 1821–1825 (2012). https://doi.org/10.1016/j.wasman.2012.05.033

    Article  Google Scholar 

  48. Xiao, B., Zhang, W., Yi, H., Qin, Y., Wu, J., Liu, J., Li, Y.Y.: Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: effect of paper waste ratio. Renew. Energy. 132, 1301–1309 (2019). https://doi.org/10.1016/j.renene.2018.09.030

    Article  Google Scholar 

  49. Algapani, D.E., Qiao, W., Ricci, M., Bianchi, D., MWandera, S., Adani, F., Dong, R.: Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renew. Energy. 130, 1108–1115 (2019). https://doi.org/10.1016/j.renene.2018.08.079

    Article  Google Scholar 

  50. Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.J.: Anaerobic digestion of food waste—effect of recirculation and temperature on performance and microbiology. Water Res. 96, 246–254 (2016). https://doi.org/10.1016/j.watres.2016.03.058

    Article  Google Scholar 

  51. Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z., Ruan, W.: Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int. Biodeterior. Biodegrad. 105, 153–159 (2015). https://doi.org/10.1016/j.ibiod.2015.09.005

    Article  Google Scholar 

  52. Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013). https://doi.org/10.1016/j.biortech.2012.10.138

    Article  Google Scholar 

  53. Chan, P.C., De Toledo, R.A., Lu, I., Shim, H.: Co-digestion of food waste and domestic wastewater—effect of copper supplementation on biogas production. Energy Procedia. 153, 237–241 (2018). https://doi.org/10.1016/j.egypro.2018.10.008

    Article  Google Scholar 

  54. Shi, X., Zuo, J., Zhang, M., Wang, Y., Yu, H., Li, B.: Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor. Bioresour. Technol. 292, 121864 (2019). https://doi.org/10.1016/j.biortech.2019.121864

    Article  Google Scholar 

  55. Owamah, H.I., Izinyon, O.C.: Optimal combination of food waste and maize husk for enhancement of biogas production: Experimental and modelling study. Environ. Technol. Innov. 4, 311–318 (2015). https://doi.org/10.1016/j.eti.2015.10.001

    Article  Google Scholar 

  56. El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 101, 4021–4028 (2010). https://doi.org/10.1016/j.biortech.2010.01.027

    Article  Google Scholar 

  57. Han, W., Ye, M., Zhu, A.J., Zhao, H.T., Li, Y.F.: Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol. 191, 24–29 (2015). https://doi.org/10.1016/j.biortech.2015.04.120

    Article  Google Scholar 

  58. Sandalcı, T., Işın, Ö., Galata, S., Karagöz, Y., Güler, İ.: Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine. Int. J. Hydrog. Energy. 44, 3208–3220 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.069

    Article  Google Scholar 

  59. Nathao, C., Sirisukpoka, U., Pisutpaisal, N.: Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrog. Energy. 38, 15764–15769 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.047

    Article  Google Scholar 

  60. Cavinato, C., Giuliano, A., Bolzonella, D., Pavan, P., Cecchi, F.: Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int. J. Hydrog. Energy. 37, 11549–11555 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.065

    Article  Google Scholar 

  61. Chu, C.F., Li, Y.Y., Xu, K.Q., Ebie, Y., Inamori, Y., Kong, H.N.: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy. 33, 4739–4746 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.060

    Article  Google Scholar 

  62. Kim, D.H., Kim, S.H., Kim, H.W., Kim, M.S., Shin, H.S.: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour. Technol. 102, 8501–8506 (2011). https://doi.org/10.1016/j.biortech.2011.04.089

    Article  Google Scholar 

  63. Baldi, F., Pecorini, I., Iannelli, R.: Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renew. Energy. 143, 1755–1765 (2019). https://doi.org/10.1016/j.renene.2019.05.122

    Article  Google Scholar 

  64. Rafieenia, R., Pivato, A., Lavagnolo, M.C.: Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion. Int. J. Hydrog. Energy. 43, 12013–12022 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.170

    Article  Google Scholar 

  65. De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R., Spiga, D.: Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag. 68, 595–602 (2017). https://doi.org/10.1016/j.wasman.2017.06.013

    Article  Google Scholar 

  66. Silva, F.M.S., Mahler, C.F., Oliveira, L.B., Bassin, J.P.: Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Manag. 76, 339–349 (2018). https://doi.org/10.1016/j.wasman.2018.02.039

    Article  Google Scholar 

  67. Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F.: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 170, 115371 (2020). https://doi.org/10.1016/j.watres.2019.115371

    Article  Google Scholar 

  68. Babaei, M., Tsapekos, P., Alvarado-Morales, M., Hosseini, M., Ebrahimi, S., Niaei, A., Angelidaki, I.: Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochem. Eng. J. 147, 136–145 (2019). https://doi.org/10.1016/j.bej.2019.04.012

    Article  Google Scholar 

  69. Zeikus, J.G., Jain, M.K., Elankovan, P.: Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552 (1999). https://doi.org/10.1007/s002530051431

    Article  Google Scholar 

  70. Li, Z., Chen, Z., Ye, H., Wang, Y., Luo, W., Chang, J.S., Li, Q., He, N.: Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis. Waste Manag. 78, 789–799 (2018). https://doi.org/10.1016/j.wasman.2018.06.046

    Article  Google Scholar 

  71. Wang, K., Yin, J., Shen, D., Li, N.: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 161, 395–401 (2014). https://doi.org/10.1016/j.biortech.2014.03.088

    Article  Google Scholar 

  72. Yang, L., Ge, X., Wan, C., Yu, F., Li, Y.: Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 40, 1133–1152 (2014). https://doi.org/10.1016/j.rser.2014.08.008

    Article  Google Scholar 

  73. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  Google Scholar 

  74. European Committee for Standardization (CEN), CEN/TC 408 - Natural gas and biomethane for use in transport and biomethane for injection in the natural gas grid, EN 16723-2:2017 on natural gas and biomethane for use in transport (2017). https://www.cen.eu/news/brief-news/Pages/NEWS-2018-016.aspx

  75. UllahKhan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A.F., Rezaei-Dasht Arzhandi, M., Wan Azelee, I.: Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 150, 277–294 (2017). https://doi.org/10.1016/j.enconman.2017.08.035

    Article  Google Scholar 

  76. Qyyum, M.A., Haider, J., Qadeer, K., Valentina, V., Khan, A., Yasin, M., Aslam, M., De Guido, G., Pellegrini, L.A., Lee, M.: Biogas to liquefied biomethane: assessment of 3P’s–Production, processing, and prospects. Renew. Sustain. Energy Rev. 112, 109561 (2019). https://doi.org/10.1016/j.rser.2019.109561

    Article  Google Scholar 

  77. Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., Vijay, V., Sahay, A., Vijay, V.K., Thakur, I.S.: Review of trends in biogas upgradation technologies and future perspectives. Bioresour. Technol. Reports. (2018). https://doi.org/10.1016/j.biteb.2018.01.002

    Article  Google Scholar 

  78. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5), 1633–1645 (2011)

    Article  Google Scholar 

  79. Sarker, S., Lamb, J.J., Hjelme, D.R., Lien, K.M.: Overview of recent progress towards in-situ biogas upgradation techniques. Fuel 226, 686–697 (2018). https://doi.org/10.1016/j.fuel.2018.04.021

    Article  Google Scholar 

  80. Bose, A., Lin, R., Rajendran, K., O’Shea, R., Xia, A., Murphy, J.D.: How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnol. Adv. 37, 107444 (2019). https://doi.org/10.1016/j.biotechadv.2019.107444

    Article  Google Scholar 

  81. Nagarajan, D., Lee, D.J., Chang, J.S.: Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresource Biotechnol. 290, 121804 (2019)

    Article  Google Scholar 

  82. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G.: Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. (2018). https://doi.org/10.1016/j.biotechadv.2018.01.011

    Article  Google Scholar 

  83. Abdeen, F.R.H., Mel, M., Jami, M.S., Ihsan, S.I., Ismail, A.F.: A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng. 24, 693–702 (2016). https://doi.org/10.1016/j.cjche.2016.05.006

    Article  Google Scholar 

  84. Kadam, R., Panwar, N.L.: Recent advancement in biogas enrichment and its applications. Renew. Sustain. Energy Rev. 73, 892–903 (2017). https://doi.org/10.1016/j.rser.2017.01.167

    Article  Google Scholar 

  85. Rotunno, P., Lanzini, A., Leone, P.: Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renew. Energy. 102, 417–432 (2017). https://doi.org/10.1016/j.renene.2016.10.062

    Article  Google Scholar 

  86. Patterson, T., Esteves, S., Dinsdale, R., Guwy, A.: An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy. 39, 1806–1816 (2011). https://doi.org/10.1016/j.enpol.2011.01.017

    Article  Google Scholar 

  87. Niesner, J., Jecha, D., Stehlík, P.: Biogas upgrading technologies: State of art review in European region. Chem. Eng. Trans. 35, 517–522 (2013). https://doi.org/10.3303/CET1335086

    Article  Google Scholar 

  88. Petersson, A.W.: Biogas Upgrading Technologies—Developements and Innovations. IEA Bioenergy, Brussels (2014)

    Google Scholar 

  89. Bauer, F., Persson, T., Hulteberg, C., Tamm, D.: Biogas upgrading—technology overview, comparison and perspectives for the future. Biofuels Bioprod. Biorefining. 7, 499–511 (2013). https://doi.org/10.1002/bbb.1423

    Article  Google Scholar 

  90. Augelletti, R., Conti, M., Annesini, M.: Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2016.10.013

    Article  Google Scholar 

  91. Divekar, S., Dasgupta, S., Arya, A., Gupta, P., Singh, S., Nanoti, A.: Improved CO2 recovery from flue gas by layered bed vacuum swing adsorption (VSA). Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.05.036

    Article  Google Scholar 

  92. Durán, I., Rubiera, F., Pevida, C.: Vacuum swing CO2 adsorption cycles in waste-to-energy plants. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122841

    Article  Google Scholar 

  93. Maruyama, R.T., Pai, K.N., Subraveti, S.G., Rajendran, A.: Improving the performance of vacuum swing adsorption based CO2 capture under reduced recovery requirements. Int. J. Greenh Gas Control (2020). https://doi.org/10.1016/j.ijggc.2019.102902

    Article  Google Scholar 

  94. Saidi, A., Conti, F., Sonnleitner, M., Goldbrunner, M.: Membrane separation process for small scaled partial biogas upgrading. In: IOP Conference Series: Materials Science and Engineering (2018)

  95. Xu, J., Wu, H., Wang, Z., Qiao, Z., Zhao, S., Wang, J.: Recent advances on the membrane processes for CO2 separation. Chin. J. Chem. Eng. (2018). https://doi.org/10.1016/j.cjche.2018.08.020

    Article  Google Scholar 

  96. He, X.: A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sustain. Soc. (2018). https://doi.org/10.1186/s13705-018-0177-9

    Article  Google Scholar 

  97. Buonomenna, M.G.: Membrane separation of CO<inf>2</inf> from natural gas. Recent Patents Mater. Sci. 10, 26–49 (2017). https://doi.org/10.2174/1874464810666170303111509

    Article  Google Scholar 

  98. Chen, X.Y., Vinh-Thang, H., Ramirez, A.A., Rodrigue, D., Kaliaguine, S.: Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015). https://doi.org/10.1039/c5ra00666j

    Article  Google Scholar 

  99. Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B.: Review: recent advances in biogas purifying technologies. Int. J. Green Energy. 16, 401–412 (2019). https://doi.org/10.1080/15435075.2019.1572610

    Article  Google Scholar 

  100. Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z.: Biogas upgrading by cryogenic techniques. Environ. Chem. Lett. 17, 1251–1261 (2019). https://doi.org/10.1007/s10311-019-00872-2

    Article  Google Scholar 

  101. Yousef, A.M., El-Maghlany, W.M., Eldrainy, Y.A., Attia, A.: Upgrading biogas to biomethane and liquid CO<inf>2</inf>: a novel cryogenic process. Fuel 251, 611–628 (2019). https://doi.org/10.1016/j.fuel.2019.03.127

    Article  Google Scholar 

  102. Willson, P., Lychnos, G., Clements, A., Michailos, S., Font-Palma, C., Diego, M.E., Pourkashanian, M., Howe, J.: Evaluation of the performance and economic viability of a novel low temperature carbon capture process. Int. J. Greenh. Gas Control. 86, 1–9 (2019). https://doi.org/10.1016/j.ijggc.2019.04.001

    Article  Google Scholar 

  103. Pellegrini, L.A., De Guido, G., Langé, S.: Biogas to liquefied biomethane via cryogenic upgrading technologies. Renew. Energy. 124, 75–83 (2018). https://doi.org/10.1016/j.renene.2017.08.007

    Article  Google Scholar 

  104. Jürgensen, L., Ehimen, E., Born, J., Holm-Nielsen, J.: Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.10.069

    Article  Google Scholar 

  105. Adnan, A.I., Ong, M.Y., Nomanbhay, S., Chew, K.W., Show, P.L.: Technologies for biogas upgrading to biomethane: a review. Bioeng. 6, 1–23 (2019). https://doi.org/10.3390/bioengineering6040092

    Article  Google Scholar 

  106. Rusmanis, D., O’Shea, R., Wall, D.M., Murphy, J.D.: Biological hydrogen methanation systems–an overview of design and efficiency. Bioengineered 10, 604–634 (2019). https://doi.org/10.1080/21655979.2019.1684607

    Article  Google Scholar 

  107. Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R., Kolb, T.: Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016)

    Article  Google Scholar 

  108. Curto, D., Martín, M.: Renewable based biogas upgrading. J. Clean. Prod. 224, 50–59 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.03.176

    Article  Google Scholar 

  109. Toledo-Cervantes, A., Serejo, M.L., Blanco, S., Pérez, R., Lebrero, R., Muñoz, R.: Photosynthetic biogas upgrading to bio-methane: boosting nutrient recovery via biomass productivity control. Algal Res. 17, 46–52 (2016). https://doi.org/10.1016/j.algal.2016.04.017

    Article  Google Scholar 

  110. Meier, L., Pérez, R., Azócar, L., Rivas, M., Jeison, D.: Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass Bioenerg. 73, 102–109 (2015). https://doi.org/10.1016/j.biombioe.2014.10.032

    Article  Google Scholar 

  111. Lindeboom, R., Fermoso, F.G., Weijma, J., Zagt, K.: Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci. Technol. 64, 647–653 (2011). https://doi.org/10.2166/wst.2011.664

    Article  Google Scholar 

  112. Sarker, S., Lamb, J.J., Hjelme, D.R., Lien, K.M.: Overview of recent progress towards in-situ biogas upgradation techniques. Fuel (2018). https://doi.org/10.1016/j.fuel.2018.04.021

    Article  Google Scholar 

  113. Hayes, T.D., Isaacson, H.R., Pfeffer, J.T., Liu, Y.M.: In situ methane enrichment in anaerobic digestion. Biotechnol. Bioeng. 35, 73–86 (1990). https://doi.org/10.1002/bit.260350111

    Article  Google Scholar 

  114. Lindberg, A., Rasmuson, Å.C.: Selective desorption of carbon dioxide from sewage sludge for in situ methane enrichment—part I: Pilot-plant experiments. Biotechnol. Bioeng. 95, 794–803 (2006). https://doi.org/10.1002/bit.21015

    Article  Google Scholar 

  115. Wu, C., Huang, Q., Yu, M., Ren, Y., Wang, Q., Sakai, K.: Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis. Bioresour. Technol. 251, 40–48 (2018). https://doi.org/10.1016/J.BIORTECH.2017.12.020

    Article  Google Scholar 

  116. Luo, G., Angelidaki, I.: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 109, 2729–2736 (2012). https://doi.org/10.1002/bit.24557

    Article  Google Scholar 

  117. Karakashev, D., Batstone, D.J., Angelidaki, I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71, 331LP-338 (2005). https://doi.org/10.1128/AEM.71.1.331-338.2005

    Article  Google Scholar 

  118. Bassani, I., Kougias, P.G., Angelidaki, I.: In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour. Technol. 221, 485–491 (2016). https://doi.org/10.1016/J.BIORTECH.2016.09.083

    Article  Google Scholar 

  119. Okoro-Shekwaga, C.K., Ross, A.B., Camargo-Valero, M.A.: Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis. Appl. Energy. (2019). https://doi.org/10.1016/j.apenergy.2019.113629

    Article  Google Scholar 

  120. Shen, Y., Linville, J.L., Urgun-Demirtas, M., Schoene, R.P., Snyder, S.W.: Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy. 158, 300–309 (2015). https://doi.org/10.1016/J.APENERGY.2015.08.016

    Article  Google Scholar 

  121. Linville, J.L., Shen, Y., Ignacio-de Leon, P.A., Schoene, R.P., Urgun-Demirtas, M.: In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. Waste Manag. Res. 35, 669–679 (2017). https://doi.org/10.1177/0734242X17704716

    Article  Google Scholar 

  122. Liu, C., Sun, D., Zhao, Z., Dang, Y., Holmes, D.E.: Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. Bioresour Technol (2019). https://doi.org/10.1016/j.biortech.2019.121877

    Article  Google Scholar 

  123. Zakaria, B.S., Dhar, B.R.: Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.121738

    Article  Google Scholar 

  124. Zhang, Z., Song, Y., Zheng, S., Zhen, G., Lu, X., Takuro, K., Xu, K., Bakonyi, P.: Electro-conversion of carbon dioxide (CO2 ) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol. 279, 339–349 (2019). https://doi.org/10.1016/j.biortech.2019.01.145

    Article  Google Scholar 

  125. Cheng, S., Xing, D., Call, D.F., Logan, B.E.: Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009). https://doi.org/10.1021/es803531g

    Article  Google Scholar 

  126. Jiang, Y., Su, M., Li, D.: Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs–MEC) coupled system. Appl. Biochem. Biotechnol. 172, 2720–2731 (2014). https://doi.org/10.1007/s12010-013-0718-9

    Article  Google Scholar 

  127. van Eerten-Jansen, M.C.A.A., Jansen, N.C., Plugge, C.M., de Wilde, V., Buisman, C.J.N., ter Heijne, A.: Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J. Chem. Technol. Biotechnol. 90, 963–970 (2015). https://doi.org/10.1002/jctb.4413

    Article  Google Scholar 

  128. Song, C., Fan, Z., Li, R., Liu, Q., Kitamura, Y.: Efficient biogas upgrading by a novel membrane-cryogenic hybrid process: experiment and simulation study. J. Memb. Sci. 565, 194–202 (2018). https://doi.org/10.1016/j.memsci.2018.08.027

    Article  Google Scholar 

  129. Corbellini, V., Kougias, P.G., Treu, L., Bassani, I., Malpei, F., Angelidaki, I.: Hybrid biogas upgrading in a two-stage thermophilic reactor. Energy Convers. Manag. 168, 1–10 (2018). https://doi.org/10.1016/j.enconman.2018.04.074

    Article  Google Scholar 

  130. Akhiar, A., Battimelli, A., Torrijos, M., Carrere, H.: Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste Manag. 59, 118–128 (2017). https://doi.org/10.1016/j.wasman.2016.11.005

    Article  Google Scholar 

  131. Delzeit, R., Kellner, U.: The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenerg. 52, 43–53 (2013). https://doi.org/10.1016/j.biombioe.2013.02.029

    Article  Google Scholar 

  132. Logan, M., Visvanathan, C.: Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 37, 27–39 (2019). https://doi.org/10.1177/0734242X18816793

    Article  Google Scholar 

  133. Monfet, E., Aubry, G., Ramirez, A.A.: Nutrient removal and recovery from digestate: a review of the technology. Biofuels. 9, 247–262 (2018). https://doi.org/10.1080/17597269.2017.1336348

    Article  Google Scholar 

  134. Fuldauer, L.I., Parker, B.M., Yaman, R., Borrion, A.: Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. J. Clean. Prod. 185, 929–940 (2018). https://doi.org/10.1016/j.jclepro.2018.03.045

    Article  Google Scholar 

  135. Tampio, E., Marttinen, S., Rintala, J.: Liquid fertilizer products from anaerobic digestion of food waste: maass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 125, 22–32 (2016). https://doi.org/10.1016/j.jclepro.2016.03.127

    Article  Google Scholar 

  136. Opatokun, S.A., Yousef, L.F., Strezov, V.: Agronomic assessment of pyrolysed food waste digestate for sandy soil management. J. Environ. Manage. 187, 24–30 (2017). https://doi.org/10.1016/j.jenvman.2016.11.030

    Article  Google Scholar 

  137. Oliveira, V., Labrincha, J., Dias-Ferreira, C.: Extraction of phosphorus and struvite production from the anaerobically digested organic fraction of municipal solid waste. J. Environ. Chem. Eng. 6, 2837–2845 (2018). https://doi.org/10.1016/j.jece.2018.04.034

    Article  Google Scholar 

  138. Frossard, E., Skrabal, P., Sinaj, S., Bangerter, F., Traore, O.: Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr. Cycl. Agroecosyst. 62, 103–113 (2002). https://doi.org/10.1023/A:1015596526088

    Article  Google Scholar 

  139. Slorach, P.C., Jeswani, H.K., Cuéllar-Franca, R., Azapagic, A.: Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 236, 798–814 (2019). https://doi.org/10.1016/j.jenvman.2019.02.001

    Article  Google Scholar 

  140. Grigatti, M., Barbanti, L., Hassan, M.U., Ciavatta, C.: Fertilizing potential and CO2 emissions following the utilization of fresh and composted food-waste anaerobic digestates. Sci. Total Environ. 698, 134198 (2020). https://doi.org/10.1016/j.scitotenv.2019.134198

    Article  Google Scholar 

  141. Knoop, C., Dornack, C., Raab, T.: Effect of drying, composting and subsequent impurity removal by sieving on the properties of digestates from municipal organic waste. Waste Manag. 72, 168–177 (2018). https://doi.org/10.1016/j.wasman.2017.11.022

    Article  Google Scholar 

  142. Stiles, W.A.V., Styles, D., Chapman, S.P., Esteves, S., Bywater, A., Melville, L., Silkina, A., Lupatsch, I., Fuentes Grünewald, C., Lovitt, R., Chaloner, T., Bull, A., Morris, C., Llewellyn, C.A.: Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267, 732–742 (2018). https://doi.org/10.1016/j.biortech.2018.07.100

    Article  Google Scholar 

  143. Xia, A., Murphy, J.D.: Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 34, 264–275 (2016). https://doi.org/10.1016/j.tibtech.2015.12.010

    Article  Google Scholar 

  144. Tang, H., Chen, M., Simon Ng, K.Y., Salley, S.O.: Continuous microalgae cultivation in a photobioreactor. Biotechnol. Bioeng. 109, 2468–2474 (2012). https://doi.org/10.1002/bit.24516

    Article  Google Scholar 

  145. Koutra, E., Economou, C.N., Tsafrakidou, P., Kornaros, M.: Bio-based products from microalgae cultivated in digestates. Trends Biotechnol. 36, 819–833 (2018). https://doi.org/10.1016/j.tibtech.2018.02.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos Lyberatos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytras, G., Lytras, C., Mathioudakis, D. et al. Food Waste Valorization Based on Anaerobic Digestion. Waste Biomass Valor 12, 1677–1697 (2021). https://doi.org/10.1007/s12649-020-01108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01108-z

Keywords

Navigation