Skip to main content
Log in

Vertically-Grown TFETs: An Extensive Analysis

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

TFET is an exciting device for ultra-low and low power implementations since it improves electrical performance while also providing steeper switching ratio. This study encloses with a review of the most essential VTFET characteristics, such as negative capacitance and switching mechanisms, as well as the performance of the FEHL (field-enhanced high-κ layer). Furthermore, this paper explores the various topologies of dual-material gate, triple-material gate structures and heterojunction V-TFETs. The vertically tunnelling junction commonly used on the source area by narrowing tunnel barrier width in order to accomplish a better sub-threshold swing and an enhanced drain current. This research provides detailed information on their physical and electrical characteristics, including as channel length, drain current, leakage current, switching ratio, threshold voltage, sub-threshold swing, and transconductance. This review paper summarizes their findings, which demonstrate that the dual and triple material V-TFET are the most intriguing low-power device options in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Convertino C, Zota CB, Schmid H (2021) A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon. Nat Electron 4:162–170

    Article  CAS  Google Scholar 

  2. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) Double gate strained-Ge hetero structure tunneling FET (TFET) with record high drive currents and << 60 mV/Dec subthreshold slope. In: Proceedings IEEE International Electron Devices Meeting, pp 1–3. https://doi.org/10.1109/IEDM.2008.4796839

  3. Tripathy MR, Singh AK, Samad A, Baral K, Singh PK, Jit S (2020) Performance comparison of Ge/Si hetero-junction vertical tunnel FET with and without gate-drain underlapped structure with application to digital inverter. In: Proceedings 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), pp 1–4. https://doi.org/10.1109/EDTM47692.2020.9117840

  4. Seabaugh AC, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS Logic. In: Proceedings of the IEEE 98(12):2095–2110. https://doi.org/10.1109/JPROC.2010.2070470

  5. Long P, Wilson E, Huang JZ, Klimeck G, Rodwell MJW, Povolotskyi M (2016) Design and simulation of GaSb/InAs 2D transmission-enhanced tunneling FETs. IEEE Electron Device Lett 37(1):107–110

    Article  CAS  Google Scholar 

  6. Kale S, Kondekar P (2015) Design and investigation of double gate Schottky barrier MOSFET using gate engineering. IET Micro Nano Lett 10(12):707–711

    Article  CAS  Google Scholar 

  7. Nirschl T (2006) Scaling properties of the tunneling field effect transistor (TFET): Device and circuit. Solid-State Electron 50(1):44–51

    Article  CAS  Google Scholar 

  8. Morris DH, Avci UE, Rios R, Member S, Young IA (2014) Design of Low Voltage Tunneling-FET Conduction Characteristics. IEEE J Emerg Sel Topics Circuits Syst 4(4):380–388

    Article  Google Scholar 

  9. Tripathy MR, Samad A, Singh AK, Singh PK, Baral K, Jit S (2020) Device and circuit-level performance comparison of vertically grown all-Si and Ge/Si hetero-junction TFET. In: Proceedings IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp 1–6. https://doi.org/10.1109/CONECCT50063.2020.9198657

  10. Usha C, Vimala P (2015) A tunneling FET exploiting in various structures and different models: A review. In: Proceedings International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp 1–6. https://doi.org/10.1109/ICIIECS.2015.7192878

  11. Tripathy MR, Singh AK, Samad A, Singh PK, Baral K, Jit S (2020) Impact of heterogeneous gate dielectric on DC, RF and circuit-level performance of source-pocket engineered Ge/Si heterojunction vertical TFET. Semicond Sci Technol 35(10):105014. https://doi.org/10.1088/1361-6641/aba418

    Article  CAS  Google Scholar 

  12. Sharma N, Chauhan SS (2017) Enhancing Analog Performance suppression of subthreshold swing using hetero-junctionless double gate TFETs. Superlatt Microstruct 112:257–261

    Article  Google Scholar 

  13. Tripathy MR et al (2020) Device and circuit-level assessment of GaSb/Si heterojunction vertical tunnel-fet for low-power applications. IEEE Trans Electron Devices 67(3):1285–1292

    Article  CAS  Google Scholar 

  14. Auth C et al (2017) A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In: IEEE International Electron Devices Meeting (IEDM), pp 29.1.1–29.1.4. https://doi.org/10.1109/IEDM.2017.8268472

  15. Tripathy MR, Singh AK, Chander S, Singh PK, Baral K, Jit S (2020) Device-level performance comparison of some pocket engineered III-V/Si hetero-junction vertical tunnel field effect transistor. In: Proceedings 5th International Conference on Devices, Circuits and Systems (ICDCS), pp 180–183. https://doi.org/10.1109/ICDCS48716.2020.243576

  16. Dash DK, Saha P, Sarkar SK (2020) 3-D Analytical Modeling of Triple Metal Tri-Gate Graded Channel High-k SON TFET for Improved Performance. SILICON 12:2041–2052

    Article  CAS  Google Scholar 

  17. Datta S, Liu H, Narayanan V (2014) Tunnel FET technology? A reliability perspective. Microelectron Rel 54(5):861–874

    Article  Google Scholar 

  18. Kim SW, Choi WY, Kim H, Sun M-C, Kim HW, Park BG (2012) Investigation on hump effects of L-shaped tunnelling filed-effect transistors. In: Proceedings IEEE Silicon Nanoelectronics Workshop (SNW), pp 1–2. https://doi.org/10.1109/SNW.2012.6243306

  19. San S, Schenk A (2014) Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures. Appl Phys Lett 105(18):162101

    Google Scholar 

  20. Strangio S et al (2015) Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells. IEEE J Electr Devices Soc 3(3):223–232

    Article  Google Scholar 

  21. Neves FS et al (2016) Low-frequency noise analysis and modeling in vertical tunnel FETs with Ge source. IEEE Trans Electr Devices 63(4):1658–1665

    Article  CAS  Google Scholar 

  22. Barboni L, Siniscalchi M, Sensale-Rodriguez B (2015) TFET based circuit design using the transconductance generation efficiency gm/Id method. IEEE J Electr Devices Soc 3(3):208–216

  23. Kumar S, Goel E, Singh K, Singh B, Kumar M, Jit S (2016) A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure. IEEE Trans Electron Devices 63(8):3291–3299

    Article  CAS  Google Scholar 

  24. Narwal S, Chauhan SS (2019) Investigation of RF and linearity performance of electrode work-function engineered HDB vertical TFET. Micro Nano Letters 14(1):17–21

    Article  CAS  Google Scholar 

  25. Chen F et al (2018) Switching Mechanism and the Scalability of vertical-TFETs. IEEE Trans Electr Devices 65(7):3065–3068

    Article  CAS  Google Scholar 

  26. Narang R, Saxena M, Gupta RS, Gupta M (2012) Assessment of Ambipolar Behavior of a Tunnel FET and Influence of Structural Modifications. J Semiconduc Technol Sci 12(4):482–491

    Article  Google Scholar 

  27. Chander S, Baishya S, Sinha SK, Kumar S, Singh PK, Baral K, Tripathy MR, Singh AK, Jit S (2019) A Twodimensional analytical modeling for electrical characteristics of Ge/Si SOI-tunnel FinFETs. Superlatt Microstruct 131:30–39

    Article  CAS  Google Scholar 

  28. Tripathy MR et al (2021) Impact of interface trap charges on electrical performance characteristics of a source pocket engineered Ge/Si heterojunction vertical TFET with HfO2/Al2O3 laterally stacked gate oxide. Microelectron Rel 119(4):114073

    Article  CAS  Google Scholar 

  29. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling fieldeffect transistors. IEEE Trans Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  30. Madan J, Chaujar R (2016) Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans Device Mater Rel 16(2):227–234

    Article  CAS  Google Scholar 

  31. Khatami Y, Banerjee K (2009) Steep Subthreshold Slope n- and pType Tunnel-FET Devices for Low-Power and Energy- Efficient Digital Circuits. IEEE Trans Electr Devices 56(11):2752–2760

    Article  CAS  Google Scholar 

  32. Choi WY, Park B, Lee JD, Liu TK (2007) Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec. IEEE Electr Device Lett 28(8):743–745

    Article  CAS  Google Scholar 

  33. Mishra A, Pattanaik M, Sharma V (2013) Double gate vertical tunnel FET for hybrid CMOS-TFET based low standby power logic circuits. In: Proceedings Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, pp 1–4. https://doi.org/10.1109/AICERA-ICMiCR.2013.6575992

  34. Wang P-Y, Tsui B-Y (2016) Band engineering to improve average subthreshold swing by suppressing low electric field band-to-band tunneling with epitaxial tunnel layer tunnel FET structure. IEEE Trans Nanotechnol 15(1):74–79

    Article  CAS  Google Scholar 

  35. Jhaveri R, Nagavarapu V, Woo JCS (2011) Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans Electron Devices 58(1):80–86

    Article  CAS  Google Scholar 

  36. Sharma A, Akkala AG, Kulkarni JP, Roy K (2016) Source underlapped GaSb–InAs TFETs with applications to gain cell embedded DRAMs. IEEE Trans Electron Devices 63(6):2563–2569

    Article  CAS  Google Scholar 

  37. Abdi DB, Kumar MJ (2014) In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett 35(12):1170–1172

    Article  CAS  Google Scholar 

  38. Chen F, Ilatikhameneh H, Tan Y, Klimeck G, Rahman R (2018) Switching mechanism and the scalability of vertical-TFETs. IEEE Trans Electron Devices 65(7):3065–3068

    Article  CAS  Google Scholar 

  39. Wu P, Prakash A, Appenzeller J (2016) First Demonstration of Band-to-Band Tunneling in Black Phosphorus. In: 75th Annual Device Research Conference (DRC), pp 1–2. https://doi.org/10.1109/DRC.2017.7999394

  40. Verhulst AS, Vandenberghe WG, Maex K, De Gendt S, Heyns MM, Groeseneken G (2008) Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett 29(12):1398–1401

    Article  CAS  Google Scholar 

  41. Lee MJ, Choi WY (2012) Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett 33(10):1459–1461

    Article  CAS  Google Scholar 

  42. Rooyackers R, Vandooren A, Verhulst AS, Walke AM, Simoen E, Devriendt K, Lo-Corotondo S et al (2014) Ge-source vertical tunnel FETs using a novel replacement-source integration scheme. IEEE Trans Electr Devices 61(12):4032–4039

    Article  Google Scholar 

  43. Gandhi R, Chen Z, Singh N, Banerjee K, Lee S (2011) Vertical Si Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (<=50 mV/decade). IEEE Electr Device Lett 32(4):437–439

    Article  CAS  Google Scholar 

  44. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337

    Article  CAS  PubMed  Google Scholar 

  45. Neves FS et al (2016) Low-Frequency Noise Analysis and Modeling in Vertical Tunnel FETs With Ge Source. IEEE Trans Electron Devices 63(4):1658–1665

    Article  CAS  Google Scholar 

  46. Singh S, Raj B (2020) Two -dimensional analytical modeling of the surface potential and drain current of a double -gate vertical t -shaped tunnel field -effect transistor. J Comput Electron 19(3):1154–1163

    Article  Google Scholar 

  47. Nigam K, Kondekar P, Sharma D (2016) High frequency performance of dual metal gate vertical tunnel field effect transistor based on work function engineering. Micro Nano Lett 11(6):319–322

    Article  CAS  Google Scholar 

  48. Singh S, Raj B (2020) Modeling and simulation analysis of SiGe heterojunction double gate vertical t -shaped tunnel FET. Superlatt Microstruct 142:106496

    Article  CAS  Google Scholar 

  49. Vanlalawpuia K, Bhowmick B (2019) Investigation of a Ge -source vertical TFET with delta -doped layer. IEEE Trans Electr Devices 66(10):4439–4445

    Article  Google Scholar 

  50. Chen ZX, Yu HY, Singh N, Shen NS, Sayanthan RD, Lo GQ, Kwong DL (2009) Demonstration of Tunneling FETs Based on Highly Scalable Vertical Silicon Nanowires. IEEE Electron Device Lett 30(7):754–756

    Article  CAS  Google Scholar 

  51. Avci UE, Morris DH, Young IA (2015) Tunnel Field-Effect Transistors: Prospects and Challenges. IEEE J Electr Devices Soc 3(3):88–95

    Article  Google Scholar 

  52. Kumari P, Raj A, Priyadarshani KN, Singh S (2021) Impact of temperature and interface trapped charges variation on the Analog/RF and linearity of vertically extended drain double gate Si0.5Ge0.5 source tunnel FET. Microelectron J 113. https://doi.org/10.1016/j.mejo.2021.105077

  53. Mookerjea S, Mohata D, Mayer T, Narayanan V, Datta S (2010) Temperature-Dependent I-V Characteristics of a vertical In0.53Ga0.47As Tunnel FET. IEEE Electron Device Lett 31(6):564–566

    Article  CAS  Google Scholar 

  54. Wang L, Yu E, Taur Y, Asbeck P (2010) Design of tunneling field effect transistors based on staggered heterojunctions for ultralow-power applications. IEEE Electron Device Lett 31(5):431–433

    Article  CAS  Google Scholar 

  55. Gopal G, Garg H, Agrawal H, Varma T (2022) Stacked ferroelectric heterojunction tunnel field effect transistor on a buried oxide substrate for enhanced electrical performance. Semicond Sci Technol 37:10. https://doi.org/10.1088/1361-6641/ac830b

  56. Gopal G, Varma T (2022) Simulation-based analysis of ultra thin-body double gate ferroelectric tfet for an enhanced electric performance. SILICON 14:6553–6563

    Article  CAS  Google Scholar 

  57. Kurniawan ED, Yang S, Thirunavukkarasu V (2017) Analysis of Ge-Si Heterojunction Nanowire Tunnel FET: Impact of Tunneling Window of Band-to-Band Tunneling Model. J Electrochem Soc 164(11):3354–3358

    Article  Google Scholar 

  58. Singh H, Dwivedi AK, Nagaria D (2022) Silicon on insulator c-vtfet based design of low complexity sparse quadrature mirror filter using differential search algorithm. Silicon. https://doi.org/10.1007/s12633-022-01858-6

  59. Singh S (2022) Design and analysis of ferro electric-tunneling junction-vtfet for rf/analog and linear application. Silicon. https://doi.org/10.1007/s12633-022-01971-6

  60. Vanlalawmpuia K, Bhowmick B (2022) Interfacial charge analysis and temperature sensitivity of germanium source vertical tunnel FET with delta-doped layer. Microelectron Reliab 131:114512. https://doi.org/10.1016/j.microrel.2022.114512

  61. Chawlaa T, Khosla M, Raj B (2022) Extended Gate to source overlap Heterojunction Vertical TFET: Design, analysis, and optimization with process parameter variations. Mater Sci Semiconduct Proc 145:106643. https://doi.org/10.1016/j.mssp.2022.106643

  62. Hu VP-H, Lin H-H, Lin Y-K, Hu C (2020) Optimization of Negative-Capacitance Vertical-Tunnel FET (NCVT-FET). IEEE Trans Electron Devices 67(6):2593–2599

    Article  CAS  Google Scholar 

  63. Lee H, Park J, Shin C (2016) Performance booster for vertical tunnel field-effect transistor: field-enhanced High-k Layer. IEEE Electron Device Lett 37(11):1383–1386

    Article  CAS  Google Scholar 

  64. Seema SSC (2018) A new design approach to improve DC, analog/RF and linearity metrics of Vertical TFET for RFIC design. Superlatt Microstruct 286–295. https://doi.org/10.1016/j.spmi.2018.07.036

  65. Vanlalawpuia K, Bhowmick B (2019) Investigation of a Ge-Source Vertical TFET With Delta-Doped Layer. IEEE Trans Electron Devices 66(10):4439–4445

    Article  Google Scholar 

  66. Seema CS (2021) Linearity Performance Analysis of Double Gate (DG) VTFET Using HDB for RF Applications. SILICON 13:1121–1125

    Article  CAS  Google Scholar 

  67. Kim JH, Kim S, Park B (2019) Double-Gate TFET with vertical channel sandwiched by Lightly Doped Si. IEEE Trans Electron Devices 66(4):1656–1661

    Article  CAS  Google Scholar 

  68. Singh KS, Kumar S, Nigam K (2021) Vertical Tunneling Based Dual-material Double-gate TFET. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp 900–904. https://doi.org/10.1109/ICCCIS51004.2021.9397208

  69. Wadhwa G, Singh J, Raj B (2021) Design and investigation of Doped Triple Metal Double Gate Vertical TFET for performance enhancement. SILICON 13:1839–1849

    Article  CAS  Google Scholar 

  70. Gupta S, Wairya S, Singh S (2022) Design and analysis of Triple Metal Vertical TFET gate stacked with N-Type sige delta-doped layer. Silicon 14:4217–4225. https://doi.org/10.1007/s12633-021-01211-3

    Article  CAS  Google Scholar 

  71. Ko E, Lee H, Park J, Shin C (2016) Vertical Tunnel FET: Design Optimization With Triple Metal-Gate Layers. IEEE Trans Electron Devices 63(12):5030–5035

    Article  CAS  Google Scholar 

  72. Grillet C, Cresti A, Pala MG (2018) Vertical GaSb/AlSb/InAs Heterojunction Tunnel-FETs: A Full Quantum Study. IEEE Trans Electron Devices 65(7):3038–3044

    Article  CAS  Google Scholar 

  73. Zhao X, Vardi A, del Alamo JA (2017) Sub-Thermal Subthreshold Characteristics in Top-Down InGaAs/InAs Heterojunction Vertical Nanowire Tunnel FETs. IEEE Electron Device Lett 38(7):855–858

    Article  CAS  Google Scholar 

  74. Tomioka K, Gamo H, Motohisa J, Fukui T (2020) Vertical gate-all-around tunnel fets using ingaas nanowire/si with core-multishell structure. In: 2020 IEEE International Electron Devices Meeting, pp 21.1.1–21.1.4. https://doi.org/10.1109/IEDM13553.2020.9371991

  75. Pandey R et al (2015) Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary Heterojunction Vertical Tunnel FETs for ultra-low power logic. In: 2015 Symposium on VLSI Technology (VLSI Technology), pp T206–T207. https://doi.org/10.1109/VLSIT.2015.7223676

Download references

Author information

Authors and Affiliations

Authors

Contributions

Writing—literature search and analysis, original draft preparation: [A. Sharon Geege], Idea of the article, Resources, Supervision: [T.S Arun Samuel].

Corresponding author

Correspondence to A. Sharon Geege.

Ethics declarations

Ethics Approval and Consent to Participate

All authors freely agreed and gave their consent for the publication of this paper.

Consent for Publication

All authors freely agreed and gave their consent for the publication of this paper.

Conflicts of Interest/Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geege, A.S., Samuel, T.S.A. Vertically-Grown TFETs: An Extensive Analysis. Silicon 15, 3783–3796 (2023). https://doi.org/10.1007/s12633-022-02230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02230-4

Keywords

Navigation