Skip to main content
Log in

Crystallization and Radiation Proficiency of Transparent Sodium Silicate Glass Doped Zirconia

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A sequence of transparent homogenous glasses consists of 50Na2O – (50–x) SiO2 – xZrO2, (0 ≤ x ≤ 20 mol %), are synthesized by conventional method. All prepared samples are confirmed in an amorphous state by the X-rays diffraction XRD. The glass temperature Tg, crystallization temperature Tc, and temperature of full crystallization Tp values are increased by the increment of ZrO2. For heat-treated glasses, the XRD results show that most selected glasses appear to be completely crystallized. 133Ba, 137Cs and 60 Co sources are used for experimental measurements of the mass attenuation coefficient (MAC) of γ-rays at 365, 662, 1172 and 1332 keV respectively and theoretical calculation were depicted using XCOM, MCNP5 and Phy-X/PSD programs procedures. MAC of our samples was compared with some commercial and published nuclear radiation shielding as ordinary concrete, 100% Na2B4O7 and 100% SiO2 glasses systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript and associated personal data.

The manuscript has not been published.

References

  1. Abdel Wahab EA, Shaaban KS, Elsaman R et al (2019) Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl Phys A 125:869. https://doi.org/10.1007/s00339-019-3166-8

    Article  CAS  Google Scholar 

  2. Chandrakala C, Reddy ASS, Jedryka J et al (2020) Third-order nonlinear optical features of zirconia-added lead silicate glass ceramics embedded with Pb2Fe2O5 perovskite crystal phases and role of Fe ions. Appl Phys A 126:413. https://doi.org/10.1007/s00339-020-03570-x

    Article  CAS  Google Scholar 

  3. Fisher JG, James PF, Parker JM (2005) Soda lime zirconia silicate glasses as prospective hosts for zirconia-containing radioactive wastes. J Non-Cryst Solids 351(8–9):623–631. https://doi.org/10.1016/j.jnoncrysol.2005.01.064

    Article  CAS  Google Scholar 

  4. Loiseau P, Caurant D, Majerus O et al (2003) Crystallization study of (TiO2, ZrO2)-rich SiO2-Al2O3-CaO glasses Part I Preparation and characterization of zirconolite-based glass-ceramics. J Mater Sci 38:843–852. https://doi.org/10.1023/A:1021873301498

    Article  CAS  Google Scholar 

  5. Rao CS, Srikumar T, Gandhi Y, Ravikumar V, Veeraiah N (2011) Dielectric and spectroscopic investigations of lithium aluminium zirconium silicate glasses mixed with TiO2. Phil Mag 91(6):958–980. https://doi.org/10.1080/14786435.2010.531056

    Article  CAS  Google Scholar 

  6. Moustafa MG, Hassaan MY (2017) Optical and dielectric properties of transparent ZrO2 –TiO2 –Li2B4O7 glass system. J Alloy Compd 710:312–322. https://doi.org/10.1016/j.jallcom.2017.03.192

    Article  CAS  Google Scholar 

  7. Lu, X., Deng, L., Kerisit, S. et al. Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses. npj Mater Degrad 2, 19 (2018). https://doi.org/10.1038/s41529-018-0041-6

  8. St-Pierre J, Tran HH, Zikovsky L (1982) Immobilization of radioactive wastes: Leachability of glasses containing zirconium. J Nucl Mater 107(2–3):286–289. https://doi.org/10.1016/0022-3115(82)90427-5

    Article  CAS  Google Scholar 

  9. Abdel Wahab, E.A., El-Maaref, A.A., Shaaban, K.S., Börcsök, J., Abdelawwad, M., 2021. Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications, 111:110638. https://doi.org/10.1016/j.optmat.2020.110638

  10. Shaaban KS, Yousef ES, Mahmoud SA et al (2020) Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses. J Inorg Organomet Polym 30:4655–4663. https://doi.org/10.1007/s10904-020-01574-x

    Article  CAS  Google Scholar 

  11. Wahab EAA, Shaaban KS, Al-Baradi AM (2021) Enhancement of Optical and Physical Parameters of Lead Zinc Silicate Glasses by Doping W+3 Ions. SILICON. https://doi.org/10.1007/s12633-021-01236-8

    Article  Google Scholar 

  12. Abdel Wahab EA, Shaaban KhS (2021) Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl Phys A 127:956. https://doi.org/10.1007/s00339-021-05062-y

    Article  CAS  Google Scholar 

  13. Connelly, A. J., Travis, K. P., Hand, R. J., Hyatt, N. C. & Maddrell, E. Composition-structure relationships in simplified nuclear waste glasses: 2. the effect of ZrO2 additions. J. Am. Ceram. Soc. 94, 137–144 (2011). https://doi.org/10.1111/j.1551-2916.2010.04036.x

  14. Shaaban KS, Zahran HY, Yahia IS et al (2020) Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl Phys A 126:804. https://doi.org/10.1007/s00339-020-03982-9

    Article  CAS  Google Scholar 

  15. Bergeron B et al (2010) First investigations of the influence of IVB elements (Ti, Zr, and Hf) on the chemical durability of soda-lime borosilicate glasses. J Non Cryst Solids 356:2315–2322. https://doi.org/10.1016/j.jnoncrysol.2010.07.065

    Article  CAS  Google Scholar 

  16. Fisher JG, James PF, Parker JM (2005) Soda lime zirconia silicate glasses as prospective hosts for zirconia-containing radioactive wastes. J Non Cryst Solids 351:623–631. https://doi.org/10.1016/j.jnoncrysol.2005.01.064

    Article  CAS  Google Scholar 

  17. Abouhaswa AS, Al-Buriahi MS, Chalermpon M et al (2020) Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl Phys A 126:78. https://doi.org/10.1007/s00339-019-3264-7

    Article  CAS  Google Scholar 

  18. Li B, Li W, Zheng J (2018) Influence of Y2O3 Addition on Crystallization, Thermal, Mechanical, and Electrical Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramic for Ceramic Ball Grid Array Package. Journal of Elec Materi 47:766–772. https://doi.org/10.1007/s11664-017-5808-y

    Article  CAS  Google Scholar 

  19. Danewalia SS, Khan S, Dhillon S et al (2020) Effect of transition metals (MO-TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics. Ionics 26:2959–2967. https://doi.org/10.1007/s11581-019-03311-y

    Article  CAS  Google Scholar 

  20. Sharma G, Arya SK, Singh K (2018) Optical and thermal properties of glasses and glass-ceramics derived from agricultural wastes. Ceram Int 44(1):947–952. https://doi.org/10.1016/j.ceramint.2017.10.027

    Article  CAS  Google Scholar 

  21. Abdel Wahab, E.A., Shaaban, K.S. & Yousef, E.S. Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3

  22. Abdel Wahab, E. A., Aboraia, A. M., El Shafey, A. M., Shaaban, Kh. S., Soldatov, A. V. The effect of ZrO2 on the linear and non-linear optical properties of sodium silicate glass. Opt Quant Electron 53, 504 (2021). https://doi.org/10.1007/s11082-021-03164-8

  23. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R (1998) XCOM: photon cross sections database

  24. Şakar E, Özpolat ÖF, Alım B, Sayyed MI, Kurudirek M (2019) Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem 108496. https://doi.org/10.1016/j.radphyschem.2019.108496

  25. Hubbell JH (1982) Photon mass attenuation and energy-absorption. Int J Appl Radiat Isot 33:1269–1290

    Article  CAS  Google Scholar 

  26. Pawar PP, Bichile GK (2013) Studies on mass attenuation coefficient, Zeff and electron density of some amino acids in the energy range 0.122-1.330 MeV. Radiat Phys Chem 92:22–27

    Article  CAS  Google Scholar 

  27. Gaikwad DK, Pawar PP, Selvam TP (2017) Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat Phys Chem 138:75–80. https://doi.org/10.1016/j.radphyschem.2017.03.040

    Article  CAS  Google Scholar 

  28. Rammah YS, El-Agawany FI, El-Mesady IA (2019) Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2. Appl Phys Mater Sci Process 125. https://doi.org/10.1007/s00339-019-3023-9

  29. Rammah YS, Sayyed MI, Abohaswa AS et al (2018) FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl Phys A 124:650. https://doi.org/10.1007/s00339-018-2069-4

    Article  CAS  Google Scholar 

  30. Jackson DF, Hawkes DJ (1981) X-ray attenuation coefficients of elements and mixtures. Phys Rep 70:169–233

    Article  CAS  Google Scholar 

  31. Hine GJ (1952) The effective atomic numbers of materials for various gamma interactions. Phys Rev 85:725–737

    CAS  Google Scholar 

  32. Abdel Wahab EA, Koubisy MSI, Sayyed MI, Mahmoud KA, Zatsepin AF, Makhlouf SA, Shaaban KhS (2020) Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: Synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. J Non-Cryst Solids 120509. https://doi.org/10.1016/j.jnoncrysol.2020.120509

  33. Sardari D, Kurudriek M (2013) Studies on energy absorption and exposure buildup factors in some solutions of alkali metal chlorides. Int J Phys Sci 8(12):481–491

    CAS  Google Scholar 

  34. Wood JI (1982) Computational Methods in Reactor Shielding. Pergamon Press. Yalcin, Z., Icelli, O., Okutan, M., Boncukcuoglu, R., Artun, O., Orak, S., 2012. A different perspective to the effective atomic number (Z(eff)) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM. Nucl Instrum Methods A 686:43–47

  35. Chilton AB Faw RE, Shultis JK (1984) Principles of Radiation Shielding. PrenticeHall, Englewood Cliffs

  36. Kaplan MF (1989) Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction. Longman Scientific & Technical

  37. Lu X, Deng L, Kerisit S, Du J (2018) Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses. Npj Mater Degrad 2(1). https://doi.org/10.1038/s41529-018-0041-6

  38. Varshneya AK (1994) Fundamentals of inorganic glasses, Academic Prese Limited, 33

  39. El-Rehim AFA, Shaaban KS, Zahran HY et al (2020) Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass-Ceramics. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01708-1

    Article  Google Scholar 

  40. El-Rehim AFA, Zahran HY, Yahia IS et al (2020) Physical, Radiation Shielding and Crystallization Properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 Glasses. SILICON. https://doi.org/10.1007/s12633-020-00827-1

    Article  Google Scholar 

  41. El-Rehim AA, Zahran H, Yahia I et al (2020) Radiation, Crystallization, and Physical Properties of Cadmium Borate Glasses. SILICON. https://doi.org/10.1007/s12633-020-00798-3

    Article  Google Scholar 

  42. Shaaban KHS, Saddeek YB, Aly KA et al (2019) Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. SILICON 11:807–815. https://doi.org/10.1007/s12633-018-9964-3

    Article  CAS  Google Scholar 

  43. Gurinder PS, Joga S, Parvinder K, Simranpreet K, Deepawali A, Ravneet K, Kulwinder K, Singh DP (2020) Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J Market Res 14425–14442. https://doi.org/10.1016/j.jmrt.2020.10.020

  44. Dong MG, El-Mallawany R, Sayyed MI, Tekin HO (2017) Shielding properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat Phys Chem 141:172–178

    Article  CAS  Google Scholar 

  45. Al-Hadeethi Y, Sayyed MI (2020) A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram Int 46:6136–6140

    Article  CAS  Google Scholar 

  46. Şakar Erdem, Özpolat Özgür Fırat, BünyaminAlım MI, Sayyed Murat Kurudirek (2020) Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Rad Phys Chem. 166:108496

    Article  Google Scholar 

  47. Singh KJ, Singh N, Kaundal RS, Singh K (2008) Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl Instrum Methods Phys Res, Sect B 266(6):944–948. https://doi.org/10.1016/j.nimb.2008.02.004

    Article  CAS  Google Scholar 

  48. Lakshminarayana G, Kumar A, Dong MG, Sayyed MI, Long NV, Mahdi MA (2018) Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J NonCryst Solids 481:65–73

    Article  CAS  Google Scholar 

  49. Adem Un F (2013) Demir, Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes. Appl Radiat Isot 80:73–77

    Article  Google Scholar 

  50. Mann HS, Brar GS, Mudahar GS (2016) Gamma ray shielding effectiveness of novel light weight clay flyash bricks. Radiat Phys Chem 127:97–101

    Article  CAS  Google Scholar 

  51. Alomairy, S., Al-Buriahi, M.S., Abdel Wahab, E.A., Sriwunkum, C., Shaaban, K. 2021. Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. 47(12):17322–17330. https://doi.org/10.1016/j.ceramint.2021.03.045

Download references

Acknowledgements

We would like to thank Taif University Research Supporting Project number (TURSP-2020/24), Taif University, Taif, Saudi Arabia. Moreover, the authors express their gratitude to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/137/42.

Funding

There are currently no Funding Sources on the list.

Author information

Authors and Affiliations

Authors

Contributions

Kh. S. Shaaban, Sayed A. Makhlouf, and E.A. Abdel Wahab Conceptualization, Methodology, Writing Reviewing Discussion. Ateyyah M. Al-Baradi, M. A. Sayed and Atif Mossad Ali: Writing Reviewing Discussion.

Corresponding author

Correspondence to E. A. Abdel Wahab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests.

Consent to Participate

The authors consent to participate.

Consent for Publication

The author's consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, E.A.A., Al-Baradi, A.M., Sayed, M.A. et al. Crystallization and Radiation Proficiency of Transparent Sodium Silicate Glass Doped Zirconia. Silicon 14, 8581–8597 (2022). https://doi.org/10.1007/s12633-021-01652-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01652-w

Keywords

Navigation