Skip to main content
Log in

Effect of transition metals (MO-TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Various glasses are synthesized by melt quench technique. The addition of transition metal (TM) oxides into glasses paves the light on their crystallization and sinterability. The formation of different crystalline phases and their microstructures significantly influenced the conduction mechanism in these glass-ceramics. ZnO seemed to act as glass modifier, while TiO2 appears to act as glass former in the present glasses. Other two TM oxides might have played a role as intermediate oxides. The present glass-ceramics are mixed conductors (ionic+electronic). MnO2-contained sample shows highest electrical conductivity while Fe2O3-contained sample show lowest conductivity. The observed results are interpreted on the basis of structural differences of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darwish H, Gomaa MM (2006) Effect of compositional changes on the structure and properties of alkali–alumino borosilicate. J Mater Sci Mater Electron 17:35–42

    Article  CAS  Google Scholar 

  2. Li BO, Li WEI, Zheng J (2018) Influence of Y2O3 addition on crystallization, thermal, mechanical, and electrical properties of BaO–Al2O3–B2O3–SiO2 glass–ceramic for ceramic ball grid array package. J Electron Mater 47:766–772

    Article  CAS  Google Scholar 

  3. Sharma G, Arya SK, Singh K (2017) Optical and thermal properties of glasses and glass–ceramics derived from agricultural wastes. Ceram Int 44:947–952

    Article  Google Scholar 

  4. Majhi MR, Pyare R, Singh SP (2011) Studies on preparation and characterizations of CaO–Na2O–SiO2–P2O5 bioglass ceramics substituted with Li2O, K2O, ZnO, MgO, and B2O3. Int J Sci Eng Res 2:1–9

    Google Scholar 

  5. Arya SK, Danewalia SS, Arora M, Singh K (2016) Effect of variable oxidation states of vanadium on the structural, optical, and dielectric properties of B2O3–Li2O–ZnO–V2O5 Glasses. J Phys Chem B 120:12168–12176

    Article  CAS  Google Scholar 

  6. Khan S, Singh K (2019) Effect of MgO on structural, thermal and conducting properties of V2–xMgxO5–δ (x = 0.05–0.30) systems. Ceram Int 45:695–701

    Article  CAS  Google Scholar 

  7. Murawski L (1982) Review electrical conductivity in iron-containing oxide glasses. J Mater Sci 17:2155–2163

    Article  CAS  Google Scholar 

  8. Kang YB, Jung IH (2017) Critical evaluations and thermodynamic optimizations of the MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems. Metall Mater Trans B Process Metall Mater Process Sci 48:1721–1735

    Article  CAS  Google Scholar 

  9. Jung SS, Sohn I (2014) Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2 O3-MgO EAF waste slag. Environ Sci Technol 48:1886–1892

    Article  CAS  Google Scholar 

  10. Pandey M, Banerjee D, Sudarsan V, Kshirsagar RJ (2018) TiO2 induced structural modifications in Cs containing borosilicate glasses: Raman and infrared studies. AIP Conf Proc 1942:1–5

    Google Scholar 

  11. Dugué A, Dymshits O, Cormier L, Loiko P, Alekseeva I, Tsenter M, Bogdanov K, Lelong G, Zhilin A (2019) Structural transformations and spectroscopic properties of Ni-doped magnesium aluminosilicate glass-ceramics nucleated by a mixture of TiO2 and ZrO2 for broadband near-IR light emission. J Alloys Compd 780:137–146

    Article  Google Scholar 

  12. Sanad MMS, Rashad MM, Abdel–Aal A, El–Shahat MF, Powers K (2014) Effect of Y3+, Gd3+ and La3+ dopant ions on structural, optical and electrical properties of o–mullite nanoparticles. J Rare Earths 32:37–42

    Article  CAS  Google Scholar 

  13. Kupracz P, Szreder NA, Gazda M, Karczewski J, Barczyński RJ (2014) Phase separation and electrical properties of manganese borosilicate glasses phase separation and electrical properties of manganese borosilicate glasses. Pro Eng 98:71–77

    Article  CAS  Google Scholar 

  14. Singh S, Singh K (2015) Nanocrystalline glass ceramics: structural, physical and optical properties. J Mol Struct 1081:211–216

    Article  CAS  Google Scholar 

  15. Jaidka S, Khan S, Singh K (2018) Na2O doped CeO2 and their structural, optical, conducting and dielectric properties. Physica B 550:189–198. https://doi.org/10.1016/j.physb.2018.08.036

    Article  CAS  Google Scholar 

  16. Han J, Lai Y, Xiang Y, Wu S, Xu Y, Zeng Y (2017) Glass structure of the CaO–B2O3–SiO2–Al2O3–ZnO glasses system with different Si content. J Mater Sci Mater Electron 28:6131–6137

    Article  CAS  Google Scholar 

  17. Danewalia SS, Kaur S, Bansal N, Khan S, Singh K (2019) Influence of TiO2 and thermal processing on morphological, structural and magnetic properties of Fe2O3/MnO2 modified glass-ceramics. J Non-Cryst Solids 513:64–69

    Article  CAS  Google Scholar 

  18. Karamanov A, Taglieri G, Pelino M (2004) Sintering behavior and properties of iron-rich glass-ceramics. J Am Ceram Soc 87:1571–1574

    Article  CAS  Google Scholar 

  19. Cochain B (2013) Diffusion of sodium ions driven by charge compensation as the rate-limiting step of internal redox reactions. J Non-Cryst Solids 365:23–26

    Article  CAS  Google Scholar 

  20. Liu S, Tao H, Zhang Y, Yue Y (2015) Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses. J Am Ceram Soc 98:1799–1806

    Article  CAS  Google Scholar 

  21. Gui H, Li C, Lin C, Zhang Q, Luo Z, Han L, Liu J, Liu T, Lu A (2019) Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. J Eur Ceram Soc 39:1397–1410

    Article  CAS  Google Scholar 

  22. Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) Crystallisation kinetics in AO–Al2O3–SiO2–B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci 35:3089–3096

    Article  CAS  Google Scholar 

  23. Kaur G, Pandey OP, Singh K (2012) Glass stability and effect of heat–treatment duration on chemical interaction between calcium lanthanum borosilicate glass sealant and electrolytes. J Electrochem Soc 159:717–724

    Article  Google Scholar 

  24. Mysen BO (1980) The influence of TiO2 on the structure and derivative properties of silicate melts. Am Mineral 65:1150–1165

    CAS  Google Scholar 

  25. Carboni M (2011) Jean-Marc Latour, Enzymes with an heterodinuclear iron–manganese active site: curiosity or necessity? Coord Chem Rev 255:186–202

    Article  CAS  Google Scholar 

  26. Khan S, Kaur G, Singh K (2016) Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceram Int 43:722–727

    Article  Google Scholar 

  27. Peitl O, Dutra E, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass–ceramics. J Non-Cryst Solids 292:115–126

    Article  CAS  Google Scholar 

  28. Danewalia SS, Sharma G, Thakur S, Singh K (2016) Agricultural wastes as a resource of raw materials for developing low–dielectric glass–ceramics. Sci Rep 6:24617

    Article  CAS  Google Scholar 

  29. Macdonald SA, Schardt CR, Masiello DJ, Simmons JH (2000) Dispersion analysis of FTIR reaction measurements in silicate glasses. J Non-Cryst Solids 275:72–82

    Article  CAS  Google Scholar 

  30. Annapurna K, Das M, Kundu P, Dwivedi RN, Buddhudu S (2005) Spectral properties of Eu3+ :ZnO–B2O3–SiO2 glasses. J Mol Struct 741:53–60

    Article  CAS  Google Scholar 

  31. Maekawa H, Maekawa T, Kawamura K, Yokokawa T (1991) The structural groups of alkali silicate glasses determined from 29Si MAS–NMR. J Non-Cryst Solids 127:53–64

    Article  CAS  Google Scholar 

  32. Kamitsos EI, Kapoutsis JA, Jain H, Hsieh CH (1994) Vibrational study of the role of trivalent ions in sodium trisilicate glass. J Non-Cryst Solids 171:31–45

    Article  CAS  Google Scholar 

  33. Sembiring S (2011) Synthesis and charaterisation of rice husk silica based borosilicate (B2SiO5) ceramic by sol–gel routes. Indo J Chem 11:85–89

    Article  Google Scholar 

  34. Kim JB, Choi JK, Han IW, Sohn I (2016) High-temperature wettability and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system. J Non-Cryst Solids 432:218–226

    Article  CAS  Google Scholar 

  35. Sheoran A, Sanghi S, Rani S, Agarwal A, Seth VP (2009) Impedance spectroscopy and dielectric relaxation in alkali tungsten borate glasses. J Alloys Compd 475:804–809

    Article  CAS  Google Scholar 

  36. Prasad A, Basu A (2013) Dielectric and impedance properties of sintered magnesium aluminum silicate glass–ceramic. J Adv Ceram 2:71–78

    Article  CAS  Google Scholar 

  37. Langar A, Sdiri N, Elhouichet H, Ferida M (2017) Structure and electrical characterization of ZnO-Ag phosphate glasses. Results Phys 7:1022–1029

    Article  Google Scholar 

  38. Barczynski RJ, Murawski L (2002) Mixed electronic–ionic conductivity in transition metal oxide glasses containing alkaline ions. J Non-Cryst Solids 307–310:1055–1059

    Article  Google Scholar 

  39. Gomaa MM, Saad HD, Salman M (2008) Electrical properties of some Y2O3 and Fe2O3–containing lithium silicate glasses and glass–ceramics. J Mater Sci Mater Electron 19:5–15

    Article  CAS  Google Scholar 

  40. Bansal N, Kaur G, Singh K (2018) Braunite phase embedded Y2O3/MnO2–Al2O3–CaO–SiO2 glass ceramics and their properties. Mater Res Bull 98:34–40

  41. Kaur N, Kaur G, Khan S, Singh K (2018) Conductivity, dielectric, and structural studies of (30–x) SrO–xBaO–10Al2O3–45SiO2–5B2O3–10Y2O3 (5 ≤ x ≤ 25) glasses. Ionics 24:2343–2353

    Article  CAS  Google Scholar 

  42. Naceur H, Megriche A, Maaoui MEL (2014) Effect of sintering temperature on microstructure and electrical properties of Sr1–x(Na0.5Bi0.5)xBi2Nb2O9 solid solutions. J. Adv. Ceram 3:17–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to SAI Labs TIET, Patiala for SEM characterization. One of the authors (Savidh Khan) gratefully acknowledges the financial assistance received from CSIR, Government of India vide letter no. 09/677(0037)/2019-EMR-I. Neetu Bansal is thankful to the Department of Science and Technology (DST-WOS-A), Govt. of India for fellowship vide letter no. SR/WOS-A/PM-88/2016(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danewalia, S.S., Khan, S., Dhillon, S. et al. Effect of transition metals (MO-TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics. Ionics 26, 2959–2967 (2020). https://doi.org/10.1007/s11581-019-03311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03311-y

Keywords

Navigation