Skip to main content
Log in

Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process, Al2O3 inclusions transformed into MgO inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and (MgO) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al2O3 or MgO·Al2O3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate (or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1x, and 2.2x, respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Y. Yin, Metallurgical Process Engineering, Springer, Berlin, Heidelberg, 2011, p. 26.

    Book  Google Scholar 

  2. L.F. Zhang, Non-Metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, 2019, p. 320.

  3. L.F. Zhang, Non-metallic Inclussions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2019, p. 482.

    Google Scholar 

  4. C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Munstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158.

  5. Y.P. Chu, Z.Y. Chen, N. Liu, and L.F. Zhang, Formation and control of spinel inclusions in high-speed heavy rail steel, Iron Steel, 55(2020), No. 1, p. 38.

    Google Scholar 

  6. M.M. Song, C.L. Hu, B. Song, H.Y. Zhu, Z.L. Xue, and R.S. Xu, Effect of Ti-Mg treatment on the impact toughness of heat affected zone in 0.15%C-1.31%Mn steel, Steel Res. Int., 89(2018), No. 3, art. No. 1700355.

  7. J.F. Xu, K.P. Wang, Y. Wang, Z.D. Qu, and X.K. Tu, Effects of ferrosilicon alloy, Si content of steel, and slag basicity on compositions of inclusions during ladle furnace refining of Al-killed steel, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1011.

    Article  CAS  Google Scholar 

  8. S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291.

    Article  CAS  Google Scholar 

  9. J.H. Shin and J.H. Park, Effect of CaO/Al2O3 ratio of ladle slag on formation behavior of inclusions in Mn and V alloyed steel, ISIJ Int., 58(2018), No. 1, p. 88.

    Article  CAS  Google Scholar 

  10. Y. Ren and L.F. Zhang, Thermodynamic model for prediction of slag-steel-inclusion reactions of 304 stainless steels, ISIJ Int., 57(2017), No. 1, p. 68.

    Article  CAS  Google Scholar 

  11. Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, and W.D. Mao, Effect of slag composition on inclusions in Si-deoxidized 18Cr-8Ni stainless steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1024.

    Article  CAS  Google Scholar 

  12. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S.Y. Kitamura, Dissolution behavior of Mg from MgO into molten steel deoxidized by Al, ISIJ Int., 54(2014), No. 10, p. 2230.

    Article  CAS  Google Scholar 

  13. Y.S. Zou, A. Huang, L.P. Fu, and H.Z. Gu, Effect of lightweight refractories on the cleanness of bearing steels, Ceram. Int., 44(2018), No. 11, p. 12965.

    Article  CAS  Google Scholar 

  14. C.Y. Liu, F.X. Huang, J.L. Suo, and X.H. Wang, Effect of magnesia-carbon refractory on the kinetics of MgO·Al2O3 spinel inclusion generation in extra-low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 989.

    Article  CAS  Google Scholar 

  15. C.Y. Liu, F.X. Huang, and X.H. Wang, The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 999.

    Article  CAS  Google Scholar 

  16. M.C. Mantovani, L.R. Moraes, R. Leandro da Silva, E.F. Cabral, E.A. Possente, C.A. Barbosa, and B.P. Ramos, Interaction between molten steel and different kinds of MgO based tundish linings, Ironmaking Steelmaking, 40(2013), No. 5, p. 319.

    Article  CAS  Google Scholar 

  17. X.Y. Gao, L. Zhang, X.H. Qu, X.W. Chen, and Y.F. Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1551.

    Article  CAS  Google Scholar 

  18. Y.S. Zou, A. Huang, L.P. Fu, P.F. Lian, Y.J. Wang, and H.Z. Gu, Chemical interactions between a calcium aluminate glaze and molten stainless steel containing alumina inclusions, Ceram. Int., 44(2018), No. 1, p. 1099.

    Article  CAS  Google Scholar 

  19. M. Song, M. Nzotta, and S.C. Du, Study of the formation of non-metallic inclusions by ladle glaze and the effect of slag on inclusion composition using tracer experiments, Steel Res. Int., 80(2009), No. 10, p. 753.

    CAS  Google Scholar 

  20. Y.S. Lee, S.M. Jung, and D.J. Min, Interfacial reaction between Al2O3-SiO2-C refractory and Al/Ti-killed steels, ISIJ Int., 54(2014), No. 4, p. 827.

    Article  CAS  Google Scholar 

  21. Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si-Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1083.

    Article  CAS  Google Scholar 

  22. J.H. Shin, Y. Chung, and J.H. Park, Refractory-slag-metal-inclusion multiphase reactions modeling using computational thermodynamics: Kinetic model for prediction of inclusion evolution in molten steel, Metall. Mater. Trans. B, 48(2017), No. 1, p. 46.

    Article  CAS  Google Scholar 

  23. W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, H.P. Liu, H.G. Xiao, and Q.B. Sun, The influence of MgO/ZrO2/Al2O3 refractories on the refining process of Ti-containing steel based on kinetic study, Ceram. Int., 46(2020), No. 11, p. 17561.

    Article  CAS  Google Scholar 

  24. Y. Zhang, Y. Ren, and L.F. Zhang, Modeling transient evolution of inclusion in Si-Mn-killed steels during the ladle mixing process, Metall. Res. Technol., 114(2017), No. 3, art. No. 308.

  25. Y. Zhang, Y. Ren, and L.F. Zhang, Kinetic study on compositional variations of inclusions, steel and slag during refining process, Metall. Res. Technol., 115(2018), No. 4, art. No. 415.

  26. L.G. Zhu, Y.N. Jia, Z.X. Liu, C.J. Zhang, X.J. Wang, and P.C. Xiao, Mass-transfer model for steel, slag, and inclusions during ladle-furnace refining, High Temp. Mater. Processes, 37(2018), No. 7, p. 665.

    Article  CAS  Google Scholar 

  27. A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura, A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. basic concept and application, ISIJ Int., 53(2013), No. 12, p. 2110.

    Article  CAS  Google Scholar 

  28. S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H.E. Jeffes, Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking Steelmaking, 11(1984), No. 4, p. 202.

    CAS  Google Scholar 

  29. M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Tohoku, 2010, p. 259.

    Google Scholar 

  30. C. Wagner, Thermodynamics of Alloys, Addision-Wesley Pub. Co, Cambridge, 1962, p. 51.

    Google Scholar 

  31. C.H.P. Lupis and J.F. Elliott, Generalized interaction coefficients: Part I: Definitions, Acta Metall., 14(1966), No. 4, p. 529.

    Article  CAS  Google Scholar 

  32. G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298.

    Article  CAS  Google Scholar 

  33. H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultraclean steels, ISIJ Int., 36(1996), No. 5, p. 528.

    Article  CAS  Google Scholar 

  34. J.J. Wang, L.F. Zhang, T.J. Wen, Y. Ren, and W. Yang, Kinetic prediction for the composition of inclusions in the molten steel during the electroslag remelting, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1521.

    Article  CAS  Google Scholar 

  35. J. Zhang, Calculating model of mass action concentrations for the slag system MnO-SiO2, J. Univ. Sci. Technol. Beijing, 8(1986), No. 4, p. 1.

    CAS  Google Scholar 

  36. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang, A thermodynamic model of sulfur distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory, Metall. Mater. Trans. B, 42(2011), No. 6, p. 1150.

    Article  CAS  Google Scholar 

  37. S.C. Duan, C. Li, X.L. Guo, H.J. Guo, J. Guo, and W.S. Yang, A thermodynamic model for calculating manganese distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT, Ironmaking Steelmaking, 45(2018), No. 7, p. 655.

    Article  CAS  Google Scholar 

  38. A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura, A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part2. condition to control inclusion composition, ISIJ Int., 53(2013), No. 12, p. 2118.

    Article  CAS  Google Scholar 

  39. L.P. Fu, H.Z. Gu, A. Huang, Y.S. Zou, and H.W. Ni, Enhanced corrosion resistance through the introduction of fine pores: Role of nano-sized intracrystalline pores, Corros. Sci., 161(2019), art. No. 108182.

  40. L. Fu, Y.S. Zou, A. Huang, H.Z. Gu, and H.W. Ni, Corrosion mechanism of lightweight microporous alumina-based refractory by molten steel, J. Am. Ceram. Soc., 102(2019), No. 6, p. 3705.

    Article  CAS  Google Scholar 

  41. P.V. Danckwerts, Kinetics of the absorption of carbon dioxide in water, [in] Insights into Chemical Engineering, Elsevier, Amsterdam, 1981, p. 5.

    Chapter  Google Scholar 

  42. J.H. Wei and A. Mitchell, Changes in composition during A. C.ESR—I. Theoretical development, Acta Metall. Sin., 20(1984), No. 5, p. 387.

    Google Scholar 

  43. D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1 mass-transfer model, ISIJ Int., 57(2017), No. 8, p. 1400.

    Article  CAS  Google Scholar 

  44. D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu, Mass transfer model of desulfurization in the electroslag remelting process, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1885.

    Article  CAS  Google Scholar 

  45. W.T. Lou and M.Y. Zhu, Numerical simulation of desulfurization behavior in gas-stirred systems based on computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model, Metall. Mater. Trans. B, 45(2014), No. 5, p. 1706.

    Article  CAS  Google Scholar 

  46. J.C. Lamont and D.S. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J., 16(1970), No. 4, p. 513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation China (Nos. U1860206, 51725402, and 51874032), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-19-037A2Z and FRF-BD-20-04A), the S&T Program of Hebei, China (No. 20311006D), the High Steel Center (HSC) at Yanshan University, China, and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-feng Zhang or Ying Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jj., Zhang, Lf., Cheng, G. et al. Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction. Int J Miner Metall Mater 28, 1298–1308 (2021). https://doi.org/10.1007/s12613-021-2304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2304-4

Keywords

Navigation