Skip to main content
Log in

Effects of multipass friction stir processing and Mg addition on the microstructure and tensile properties of Al 1050 alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The effects of multipass friction stir processing (FSP) and Mg powder addition on the different microstructure parts, including the stir zone (SZ), heat-affected zone (HAZ), and thermomechanically affected zone (TMAZ) of Al 1050 alloy were investigated. Microstructural observations revealed that with the increase in the number of FSP passes, the grain size of the SZ decreased in the non-composite and composite samples, whereas that of the TMAZ and HAZ increased in the non-composite sample. Furthermore, the addition of Mg powder resulted in considerable grain refinement, and increasing the number of the FSP passes resulted in a more uniform distribution of Al—Mg intermetallic compounds in the in-situ composite sample. Results of the tensile test showed that the non-composite sample that underwent four passes of FSP exhibited a higher elongation percentage and a ductile fracture in comparison with those of the base metal and the composite sample. However, this sample exhibited a brittle fracture and a higher tensile strength in comparison with the base metal and the non-composite sample. The fabrication of composite samples resulted in a remarkable enhancement in hardness in comparison with the base metal and the non-composite samples that underwent FSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Esfahani, H.D. Manesh, M. Esmailzadeh, and E. Roshanaei, Microstructure and wear characteristics of 1050Al/Fe surface composites by friction stir processing, Mater. Res. Express, 5(2018), No. 12, art. No. 126518.

  2. R.S. Mishra, M.W. Mahoney, Y. Sato, and Y. Hovanski, eds., Friction Stir Welding and Processing VIII, John Wiley & Sons, Inc., Hoboken, USA, 2015.

    Google Scholar 

  3. A.N. Attia, Surface metal matrix composites, Mater. Des., 22(2001), No. 6, p. 451.

    Article  CAS  Google Scholar 

  4. L.R. Katipelli and N.B. Dahotre, Mechanism of high temperature oxidation of laser surface engineered TiC/Al alloy ‘composite’ coating on 6061 aluminium alloy, Mater. Sci. Technol., 17(2001), No. 9, p. 1061.

    Article  CAS  Google Scholar 

  5. B. Sattari, M. Shamanian, A. Ashrafi, M. Salehi, and F. Salimijazi, Effect of number of passes on the corrosion behavior of Fe/Al surface composites produced by plasma spraying and friction stir processing, J. Mater. Process. Technol., 250(2017), p. 35.

    Article  CAS  Google Scholar 

  6. W.H. Peng, S.Z. Hao, J. Chen, W. Li, L.M. Zhao, and J. Deng, Surface composite microstructure and improved mechanical property of YG10X cemented carbide induced by high current pulsed electron beam irradiation, Int. J. Refract. Met. Hard Mater., 78(2019), p. 233.

    Article  CAS  Google Scholar 

  7. K. Li, X.M. Liu, and Y. Zhao, Research status and prospect of friction stir processing technology, Coatings, 9(2019), No. 2, art. No. 129.

  8. H.B. Michael Rajan, S. Ramabalan, I. Dinaharan, and S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites, Mater. Des., 44(2013), p. 438.

    Article  CAS  Google Scholar 

  9. R.A. Varin, Intermetallic-reinforced light-metal matrix in situ composites, Metall. Mater. Trans. A, 33(2002), No. 1, p. 193.

    Article  Google Scholar 

  10. H.X. Peng, D.Z. Wang, L. Geng, C.K. Yao, and J.F. Mao, Evaluation of the microstructure of in situ reaction processed Al3Ti—Al2O3—Al composite, Scripta Mater., 37(1997), No. 2, p. 199.

    Article  CAS  Google Scholar 

  11. S.R. Anvari, F. Karimzadeh, and M.H. Enayati, A novel route for development of Al—Cr—O surface nano-composite by friction stir processing, J. Alloys Compd., 562(2013), p. 48.

    Article  CAS  Google Scholar 

  12. L.M. Ke, C.P. Huang, L. Xing, and K.H. Huang, Al—Ni inter-metallic composites produced in situ by friction stir processing, J. Alloys Compd., 503(2010), No. 2, p. 494.

    Article  CAS  Google Scholar 

  13. I.S. Lee, P.W. Kao, C.P. Chang, and N.J. Ho, Formation of Al—Mo intermetallic particle-strengthened aluminum alloys by friction stir processing, Intermetallics, 35(2013), p. 9.

    Article  CAS  Google Scholar 

  14. G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, and P. Švec, Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al—Fe2O3 system by friction stir processing, Mater. Charact., 127(2017), p. 279.

    Article  CAS  Google Scholar 

  15. P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson, Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy, Mater. Sci. Eng. A, 716(2018), p. 165.

    Article  CAS  Google Scholar 

  16. L.Q. Wang, L.C. Xie, Y.T. Lü, L.C. Zhang, L.Y. Chen, Q. Meng, J. Qu, D. Zhang, and W.J. Lu, Microstructure evolution and superelastic behavior in Ti—35Nb—2Ta—3Zr alloy processed by friction stir processing, Acta Mater., 131(2017), p. 499.

    Article  CAS  Google Scholar 

  17. D.A. Porter, K.E. Easterling, and K.E. Easterling, Phase Transformation in Metals and Alloys (Revised Reprint), CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  18. T.C. Schulthess, P.E.A. Turchi, A. Gonis, and T.G. Nieh, Systematic study of stacking fault energies of random Al-based alloys, Acta Mater., 46(1998), No. 6, p. 2215.

    Article  CAS  Google Scholar 

  19. T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, and K. Higashi, Effect of Mg content on the minimum grain size of Al—Mg alloys obtained by friction stir processing, Scripta Mater., 64(2011), No. 4, p. 355.

    Article  CAS  Google Scholar 

  20. M.S. Soliman, The high-temperature creep behaviour of an Al—1 wt% Cu solid-solution alloy, J. Mater. Sci., 28(1993), No. 16, p. 4483.

    Article  CAS  Google Scholar 

  21. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel, and R.A. Spurling, Properties of friction-stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A, 29(1998), No. 7, p. 1955.

    Article  Google Scholar 

  22. J.W. Martin, R.D. Doherty, and B. Cantor, Stability of Microstructure in Metallic Systems, 2nd ed., Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  23. K.F. Adam, Z.D. Long, and D.P. Field, Analysis of particle-stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy, Metall. Mater. Trans. A, 48(2017), No. 4, p. 2062.

    Article  CAS  Google Scholar 

  24. C.S. Ramesh, R. Keshavamurthy, P.G. Koppad, and K.T. Kashyap, Role of particle stimulated nucleation in recrystallization of hot extruded Al 6061/SiCp composites, Trans. Nonferrous Met. Soc. China, 23(2013), No. 1, p. 53.

    Article  CAS  Google Scholar 

  25. B. Verlinden, J.H. Driver, I. Samajdar, and R. Doherty, Thermo-Mechanical Processing of Metallic Materials, Elsevier, Great Britain, 2007.

    Google Scholar 

  26. S.S. Mirjavadi, M. Alipour, A.M.S. Hamouda, A. Matin, S. Kord, B.M. Afshari, and P.G. Koppad, Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites, J. Alloys Compd., 726(2017), p. 1262.

    Article  CAS  Google Scholar 

  27. E. Moustafa, Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites, Materials, 10(2017), No. 9, art. No. 1053.

  28. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Mater., 58(2008), No. 5, p. 349.

    Article  CAS  Google Scholar 

  29. M. Azizieh, A.H. Kokabi, and P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Mater. Des., 32(2011), No. 4, p. 2034.

    Article  CAS  Google Scholar 

  30. S. Tutunchilar, M. Haghpanahi, M.K. Besharati Givi, P. Asadi, and P. Bahemmat, Simulation of material flow in friction stir processing of a cast Al—Si alloy, Mater. Des., 40(2012), p. 415.

    Article  CAS  Google Scholar 

  31. G. Dowson, Powder Metallurgy the Process and Its Products, Adam Hilger, Bristol, 1990, p. 167.

    Google Scholar 

  32. Q. Zhang, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Reactive mechanism and mechanical properties of in situ composites fabricated from an Al-TiO2 system by friction stir processing, Acta Mater., 60(2012), No. 20, p. 7090.

    Article  CAS  Google Scholar 

  33. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1986.

    Google Scholar 

  34. M. Hajizamani and M. Alizadeh, Modification of microstructure and mechanical properties of Al-Zn-Mg/3 wt.% Al2O3 composite through semi-solid thermomechanical processing using variable loads, Int. J. Mater. Res., 108(2017), No. 10, p. 840.

    Article  CAS  Google Scholar 

  35. F.J. Humphreys and M. Hatherly, Recrystallization textures [in] Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 1995, p. 327.

    Google Scholar 

  36. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater., 18(2006), No. 17, p. 2280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Arshadi Rastabi.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastabi, S.A., Mosallaee, M. Effects of multipass friction stir processing and Mg addition on the microstructure and tensile properties of Al 1050 alloys. Int J Miner Metall Mater 29, 97–107 (2022). https://doi.org/10.1007/s12613-020-2074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2074-4

Keywords

Navigation