Skip to main content
Log in

Microstructural, Mechanical and Tribological Characterization of Friction Stir Welded A7075/ZrB2 In Situ Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) has emerged as an efficient technique for the welding of aluminum alloys. However, its potential for the welding of particulate reinforced aluminum matrix composites (AMCs) is yet to be explored fully. The reinforcements affect welding process because it complicates microstructural modifications in weld zone, mainly in nugget zone (NZ). Thus, the present study was aimed to investigate the effect of FSW process on microstructural features and assess the quality of weld after welding of A7075/ZrB2 in situ composites. The microstructural features were captured through optical microscopy, scanning electron microscopy and electron back-scattered diffraction technique. The results revealed, after friction stir welding, that ZrB2 clusters broke completely and dispersed uniformly in the NZ. It was also observed that aluminum matrix experienced substantial grain size reduction due to dynamic recrystallization caused by frictional heat and plastic deformation. The joint efficiency of the welded structure was judged by tensile test. The obtained result revealed a higher value ( 90%) which may be ascribed to grain size reduction, uniform dispersion of ZrB2 particles and increased particle/matrix interface characteristics along with eradication of casting defects. The improved microstructural features led to higher hardness and wear resistance in NZ of friction stir welded composite. Spalling and delamination were predominant wear mechanisms in the welded and un-welded as-cast A7075 alloys, whereas these mechanisms were not significant in welded as well as un-welded A7075/ZrB2 in situ composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. D. Miracle, Metal Matrix Composites–From Science to Technological Significance, Compos. Sci. Technol., 2005, 65(15–16), p 2526–2540.

    CAS  Google Scholar 

  2. J. Kaczmar, K. Pietrzak and W. Włosiński, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106(1–3), p 58–67.

    Google Scholar 

  3. S.R. Bakshi, D. Lahiri and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites-A Review, Int. Mater. Rev., 2010, 55(1), p 41–64.

    CAS  Google Scholar 

  4. K. Suryanarayanan, R. Praveen and S. Raghuraman, Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: A Literature Review, Int. J. Innovat. Res. Sci., Eng. Technol, 2013, 2(11), p 6336–6344.

    Google Scholar 

  5. A. Kumar, C. VeereshNayak, M.A. Herbert and S.S. Rao, Microstructure and Hardness of Friction Stir Welded Aluminium–Copper Matrix-based Composite Reinforced with 10 wt% SiCp, Mat. Res. Innovat., 2014, 18(6), p S6-84.

    Google Scholar 

  6. M.A. Herbert, A.K. Shettigar, A.V. Nigalye, S.S. Rao, 2016 Investigation on Microstructure and Mechanical Properties of Friction Stir Welded AA6061-4.5 Cu-10SiC composite, IOP Conference Series: Materials Science and Engineering, , IOP Publishing, p 012125

  7. O.S. Salih, H. Ou, W. Sun and D. McCartney, A review of Friction Stir Welding of Aluminium Matrix Composites, Mater. Des., 2015, 86, p 61–71.

    CAS  Google Scholar 

  8. X. Kai, Y. Zhao, A. Wang, C. Wang and Z. Mao, Hot Deformation Behavior of in situ nano ZrB2 Reinforced 2024Al Matrix Composite, Compos. Sci. Technol., 2015, 116, p 1–8.

    CAS  Google Scholar 

  9. S. Nair, J. Tien and R. Bates, SiC-Reinforced Aluminium Metal Matrix Composites, Int. Met. Rev., 1985, 30(1), p 275–290.

    CAS  Google Scholar 

  10. J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, S. Kumar, R.K. Fotedar and A.K. Suri, Investigations on Synthesis of ZrB2 and Development of New Composites with HfB2 and TiSi2, Int. J. Refract Metal Hard Mater., 2011, 29(1), p 21–30.

    CAS  Google Scholar 

  11. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan and S. Mohan, Wear, Friction and Profilometer Studies of Insitu AA5052/ZrB2 Composites, Tribol. Int., 2016, 97, p 313–326.

    CAS  Google Scholar 

  12. X. Zhang, D. Ni, B. Xiao, H. Andrä, W. Gan, M. Hofmann and Z. Ma, Determination of Macroscopic and Microscopic Residual Stresses in Friction Stir Welded Metal Matrix Composites via Neutron Diffraction, Acta Mater., 2015, 87, p 161–173.

    CAS  Google Scholar 

  13. Y. Li, X. Leng, S. Cheng and J. Yan, Microstructure Design and Dissolution Behavior Between 2024 Al/Sn with The Ultrasonic-Associated Soldering, Mater. Des., 2012, 40, p 427–432.

    CAS  Google Scholar 

  14. G.O. Cook and C.D. Sorensen, Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding, J. Mater. Sci., 2011, 46(16), p 5305–5323.

    CAS  Google Scholar 

  15. H. Wang, Y. Chen and L. Yu, ‘In-Situ’Weld-Alloying/Laser Beam Welding of SiCp/6061Al MMC, Mater. Sci. Eng., A, 2000, 293(1–2), p 1–6.

    Google Scholar 

  16. J. Niu, L. Pan, M. Wang, C. Fu and X. Meng, Research on Laser Welding of Aluminum Matrix Composite SiCw/6061, Vacuum, 2006, 80(11–12), p 1396–1399.

    CAS  Google Scholar 

  17. P. Kun, H.-C. Cui, F.-G. Lu, X.-M. Wu, X.-H. Tang, Y. Shun and S.-N. Lou, Mechanical Properties and Wear Resistance of Aluminum Composite Welded by Electron Beam, Transac. Nonferrous Met. Soc. China, 2011, 21(9), p 1925–1931.

    Google Scholar 

  18. R. Garcia, V. Lopez, E. Bedolla and A. Manzano, A Comparative Study of the MIG Welding of AI/TiC Composites Using Direct and Indirect Electric arc Processes, J. Mater. Sci., 2003, 38(12), p 2771–2779.

    CAS  Google Scholar 

  19. D. Storjohann, O. Barabash, S. David, P. Sklad, E. Bloom and S. Babu, Fusion and Friction Stir Welding of Aluminum-Metal-Matrix Composites, Metall. and Mater. Trans. A., 2005, 36(11), p 3237–3247.

    Google Scholar 

  20. R.W.C. J.A. Lee, and J. Ding, Friction Stir Welding for Aluminum Metal Matrix Composites (MMC’s) (MSFC Center Director’s Discretionary Fund Final Report, Project No. 98-09) NASA/TM–1999-209876, Space Flight Center, Marshall Space Flight Center, Alabama., Friction Stir Welding for Aluminum Metal Matrix Composites (MMC’s) (MSFC Center Director’s Discretionary Fund Final Report, Project No. 98-09) NASA/TM–1999-209876, Space Flight Center, Marshall Space Flight Center, Alabama., p

  21. R.S. Mishra and Z. Ma, Friction stir welding and processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78.

    Google Scholar 

  22. N.K. Babu, K. Kallip, M. Leparoux, K.A. AlOgab, G. Reddy and M. Talari, Characterization of Microstructure and Mechanical Properties of Friction Stir Welded AlMg5-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2016, 658, p 109–122.

    CAS  Google Scholar 

  23. M. Ellis, Joining of Aluminium Based Metal Matrix Composites, Int. Mater. Rev., 1996, 41(2), p 41–58.

    CAS  Google Scholar 

  24. D. Wang, B. Xiao, D. Ni and Z. Ma, Friction Stir Welding of Discontinuously Reinforced Aluminum Matrix Composites: A Review, ActaMetallurgicaSinica (English Letters), 2014, 27(5), p 816–824.

    CAS  Google Scholar 

  25. R.S. Mishra, Z. Ma and I. Charit, Friction Stir Processing: A Novel Technique For Fabrication of Surface Composite, Mater. Sci. Eng., A, 2003, 341(1–2), p 307–310.

    Google Scholar 

  26. L. Marzoli, A. Strombeck, J. Dos Santos, C. Gambaro and L. Volpone, Friction Stir Welding of an AA6061/Al2O3/20p Reinforced Alloy, Compos. Sci. Technol., 2006, 66(2), p 363–371.

    CAS  Google Scholar 

  27. M. Amirizad, A. Kokabi, M.A. Gharacheh, R. Sarrafi, B. Shalchi and M. Azizieh, Evaluation of Microstructure and Mechanical Properties In Friction Stir Welded A356+ 15% SiCp Cast Composite, Mater. Lett., 2006, 60(4), p 565–568.

    CAS  Google Scholar 

  28. H. Uzun, Friction Stir Welding of SiC Particulate Reinforced AA2124 Aluminium Alloy Matrix Composite, Mater. Des., 2007, 28(5), p 1440–1446.

    CAS  Google Scholar 

  29. A. Feng, B. Xiao and Z. Ma, Effect of Microstructural Evolution on Mechanical Properties of Friction Stir Welded AA2009/SiCp Composite, Compos. Sci. Technol., 2008, 68(9), p 2141–2148.

    CAS  Google Scholar 

  30. X.-G. Chen, M. Da Silva, P. Gougeon and L. St-Georges, Microstructure and Mechanical Properties of Friction Stir Welded AA6063–B4C Metal Matrix Composites, Mater. Sci. Eng., A, 2009, 518(1–2), p 174–184.

    Google Scholar 

  31. S. Vijay and N. Murugan, Influence of Tool Pin Profile on The Metallurgical And Mechanical Properties of Friction Stir Welded Al–10 wt% TiB2 Metal Matrix Composite, Mat. Des., 2010, 31(7), p 3585–3589.

    CAS  Google Scholar 

  32. H. Nami, H. Adgi, M. Sharifitabar and H. Shamabadi, Microstructure and Mechanical Properties of Friction Stir Welded Al/Mg2Si Metal Matrix Cast Composite, Mater. Des., 2011, 32(2), p 976–983.

    CAS  Google Scholar 

  33. S. Gopalakrishnan and N. Murugan, Prediction of Tensile Strength of Friction Stir Welded Aluminium Matrix TiCp Particulate Reinforced Composite, Mater. Des., 2011, 32(1), p 462–467.

    CAS  Google Scholar 

  34. D. Shindo, A. Rivera and L. Murr, Shape Optimization for Tool Wear in the Friction-Stir Welding of Cast AI359-20% SiC MMC, J. Mater. Sci., 2002, 37(23), p 4999–5005.

    CAS  Google Scholar 

  35. G. Minak, L. Ceschini, I. Boromei and M. Ponte, Fatigue Properties of Friction Stir Welded Particulate Reinforced Aluminium Matrix Composites, Int. J. Fatigue, 2010, 32(1), p 218–226.

    CAS  Google Scholar 

  36. J. David Raja Selvam, I. Dinaharan, (2017) In Situ Formation of ZrB2 Particulates and Their Influence On Microstructure and Tensile Behavior of AA7075 Aluminum Matrix Composites, Eng. Sci. Technol. Int. J., 20(1), p 187–196

  37. N. Muralidharan, K. Chockalingam, I. Dinaharan and K. Kalaiselvan, Microstructure and Mechanical behavior of AA2024 Aluminum Matrix Composites Reinforced with In Situ Synthesized ZrB2 Particles, J. Alloy. Compd., 2018, 735, p 2167–2174.

    CAS  Google Scholar 

  38. S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan and A. Karthick, Effect of ZrB2 on Microstructural, Mechanical and Corrosion Behaviour of Aluminium (AA7178) Alloy Matrix Composite Prepared by The Stir Casting Route, Ceram. Int., 2021 https://doi.org/10.1016/j.ceramint.2021.01.158

    Article  Google Scholar 

  39. I. Dinaharan, N. Murugan and S. Parameswaran, Influence of in Situ Formed ZrB2 Particles on Microstructure and Mechanical Properties of AA6061 Metal Matrix Composites, Mater. Sci. Eng., A, 2011, 528(18), p 5733–5740.

    CAS  Google Scholar 

  40. N. Kumar, R.K. Gautam and S. Mohan, In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of Aa5052 Metal-Matrix Composites, Mater. Des., 2015, 80, p 129–136.

    CAS  Google Scholar 

  41. R. Prasad, S.P. Tewari and J.K. Singh, Microstructural and Wear Characterization of Friction Stir Processed ZrB2/AA7075 In-Situ Composites, Materials Research Express, 2019, 6(8), p 086514.

    CAS  Google Scholar 

  42. F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera and G. González-Doncel, Friction Stir Welding of Thick Plates of Aluminum Alloy Matrix Composite With A High Volume Fraction of Ceramic Reinforcement, Compos. A Appl. Sci. Manuf., 2013, 54, p 117–123.

    CAS  Google Scholar 

  43. K. Kalaiselvan, I. Dinaharan and N. Murugan, Characterization of Friction Stir Welded Boron Carbide Particulate Reinforced AA6061 Aluminum Alloy Stir Cast Composite, Mater. Des., 2014, 55, p 176–182.

    CAS  Google Scholar 

  44. L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, (2007) Effect of Friction Stir Welding On Microstructure, Tensile And Fatigue Properties of the AA7005/10 vol.% Al2O3p Composite, Composites Science and Technology, 67(3-4), p 605-615

  45. D. Ni, D. Chen, D. Wang, B. Xiao and Z. Ma, Influence of Microstructural Evolution on Tensile Properties of Friction Stir Welded Joint of Rolled SiCp/AA2009-T351 sheet, Mater. Des., 2013, 51, p 199–205.

    CAS  Google Scholar 

  46. D. Wang, B. Xiao, Q. Wang and Z. Ma, Evolution of the Microstructure and Strength In The Nugget Zone of Friction Stir Welded SiCp/Al–Cu–Mg Composite, J. Mater. Sci. Technol., 2014, 30(1), p 54–60.

    CAS  Google Scholar 

  47. R. Yang, Z. Zhang, Y. Zhao, G. Chen, M. Liu, L. Jiao and L. Chen, Microstructure-Property Analysis of ZrB2/6061Al Hierarchical Nanocomposites Fabricated by Direct Melt Reaction, Mater. Charact., 2016, 112, p 51–59.

    CAS  Google Scholar 

  48. R. Prasad, H. Kumar, P. Kumar, S. Tewari and J.K. Singh, Filler Dispersion and Unidirectional Sliding Characteristics of As-Cast And Multi-Pass Friction Stir Processed ZrB2/AA7075 In-Situ Composites, J Tribol. DOI, 2021, 10(1115/1), p 4048885.

    Google Scholar 

  49. P. Cavaliere, E. Cerri, L. Marzoli and J. Dos Santos, Friction Stir Welding of Ceramic Particle Reinforced Aluminium Based Metal Matrix Composites, Appl. Compos. Mater., 2004, 11(4), p 247–258.

    CAS  Google Scholar 

  50. L. Ceschini, I. Boromei, G. Minak, A. Morri and F. Tarterini, Microstructure, Tensile and Fatigue Properties of AA6061/20 vol.% Al2O3p Friction Stir Welded Joints, Composites Part A: ApplSciManufact, 2007, 38(4), p 1200–1210.

    Google Scholar 

  51. J.-Q. Su, T.W. Nelson and C.J. Sterling, Microstructure Evolution DuringFsw/Fsp of High Strength Aluminum Alloys, Mater. Sci. Eng., A, 2005, 405(1–2), p 277–286.

    Google Scholar 

  52. F.J. Humphreys, M. Hatherly, 2012 Recrystallization and Related Annealing Phenomena, Elsevier,

  53. K. Jata and S. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys, Scripta Mater., 2000 https://doi.org/10.1016/S1359-6462(00)00480-2

    Article  Google Scholar 

  54. S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51(9), p 2685–2699.

    CAS  Google Scholar 

  55. P. Apps, J.R. Bowen and P. Prangnell, The Effect of Coarse Second-Phase Particles on The Rate of Grain Refinement During Severe Deformation Processing, Acta Mater., 2003, 51(10), p 2811–2822.

    CAS  Google Scholar 

  56. M. Ferry and F. Humphreys, The deformation and Recrystallization of Particle-Containing {011}< 100> Aluminium Crystals, Acta Mater., 1996, 44(8), p 3089–3103.

    CAS  Google Scholar 

  57. T. McNelley, S. Swaminathan and J. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scripta Mater., 2008, 58(5), p 349–354.

    CAS  Google Scholar 

  58. J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun and J. Wei, Friction Stir Welding of Dissimilar Materials Between AA6061 and AA7075 Al Alloys Effects of Process Parameters, Materials & Design (1980-2015), 2014, 56, p 185–192.

    CAS  Google Scholar 

  59. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold And Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207.

    CAS  Google Scholar 

  60. B. Wang, B.-B. Lei, J.-X. Zhu, Q. Feng, L. Wang and D. Wu, EBSD Study on Microstructure and Texture Of Friction Stir Welded AA5052-O and AA6061-T6 dissimilar joint, Mater. Des., 2015, 87, p 593–599.

    CAS  Google Scholar 

  61. K. Huang and R. Logé, A Review of Dynamic Recrystallization Phenomena In Metallic Materials, Mater. Des., 2016, 111, p 548–574.

    CAS  Google Scholar 

  62. J.-Q. Su, T. Nelson, R. Mishra and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050–T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729.

    CAS  Google Scholar 

  63. I. Dinaharan and N. Murugan, Effect of Friction Stir Welding on Microstructure, Mechanical and Wear Properties of AA6061/ZrB2 In Situ Cast Composites, Mater. Sci. Eng., A, 2012, 543, p 257–266.

    CAS  Google Scholar 

  64. L.-E. Svensson, L. Karlsson, H. Larsson, B. Karlsson, M. Fazzini and J. Karlsson, Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloys With Special Reference to AA 5083 and AA 6082, Sci. Technol. Weld. Joining, 2000, 5(5), p 285–296.

    CAS  Google Scholar 

  65. P. Dong, H. Li, D. Sun, W. Gong and J. Liu, Effects of Welding Speed on the Microstructure and Hardness in Friction Stir Welding Joints of 6005A–T6 Aluminum Alloy, Mater. Des., 2013, 45, p 524–531.

    CAS  Google Scholar 

  66. S. Narendranath and D. Chakradhar, Microstructure, Hardness and Tensile Properties of Friction Stir Welded Aluminum Matrix Composite Reinforced with SiC and Fly Ash, SILICON, 2019, 11(6), p 2557–2565.

    Google Scholar 

  67. P. Periyasamy, B. Mohan, V. Balasubramanian, S. Rajakumar and S. Venugopal, Multi-Objective Optimization of Friction Stir Welding Parameters Using Desirability Approach to Join Al/SiCp Metal Matrix Composites, Transac. Nonferrous Met. Soc. China, 2013, 23(4), p 942–955.

    CAS  Google Scholar 

  68. W. Hoziefa, S. Toschi, M. Ahmed, A. Morri, A. Mahdy, M.E.-S. Seleman, I. El-Mahallawi, L. Ceschini and A. Atlam, Influence of Friction Stir Processing on the Microstructure and Mechanical Properties of a Compocast AA2024-Al2O3 Nanocomposite, Mater. Des., 2016, 106, p 273–284.

    CAS  Google Scholar 

  69. M.-J. Shen, T. Ying, F.-Y. Chen and J.-M. Hou, Effect of Micro-and Nano-SiC Particulate Reinforcements In Magnesium-Based Metal Matrix Composites, J. Mater. Eng. Perform., 2016, 25(6), p 2222–2229.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parshant Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, R., Kumar, H., Kumar, P. et al. Microstructural, Mechanical and Tribological Characterization of Friction Stir Welded A7075/ZrB2 In Situ Composites. J. of Materi Eng and Perform 30, 4194–4205 (2021). https://doi.org/10.1007/s11665-021-05750-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05750-z

Keywords

Navigation