Skip to main content
Log in

Differential sensitivity of Madin-Darby canine kidney (MDCK) cells to epinephrine

  • Published:
The journal of nutrition, health & aging

Abstract

Catecholamines regulate a variety of cellular functions in the mammalian kidney. The present study was aimed to investigate the differential sensitivity of Madin-Darby Kidney Cells (MDCK cells) to epinephrine in a dose-dependent manner. The loss of adhesion and altered cell shape were observed in MDCK cells. The presence of apoptosis and necrosis were studied by the fluorescence microscope and Confocal Laser Scanning Microscope (CLSM). Scanning Electron Microscope (SEM) analysis showed several surface microvilli, and cells were rounded having ruffled and crenated surface. Agarose gel electrophoresis study showed the presence of smearing, which further confirms the occurrence of necrosis. The fluorescence staining study showed the increased reactive oxygen species (ROS) level. Up-regulation of p53, bax, and caspase 3 mRNA expressions was evidenced by quantitative PCR (qPCR). Caspase 3 activity was also increased in epinephrine treated cells. Our experimental results do not imply that the epinephrine should not be used in the clinical treatments. However, our results add a research note of caution on the possible cytotoxic effect of maximal doses of epinephrine over a prolonged time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Osswald H, Grevin J. Effects of adrenergic activators and inhibitors on kidney function. In: Born GVR, Farah A, Herlcen H, Welch AD (ed) Springer-Verlag, Berlin, 1980;243–288.

  2. Insel PA, Snavely MD. Catecholamines and the kidney: receptors and renal function. Annu Rev Physiol 1981;43:625–636.

    Article  CAS  PubMed  Google Scholar 

  3. Endori H, Imai M. Introduction to new approaches in renal pharmacology. In: Hagihara Y, Ebashi J. (ed) Cardio-renal and Cell Pharmacology, Oxford, 1982;297–293.

  4. Gaush CR, Ward WL, Smith TF. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 1996;122:931–935.

    Article  Google Scholar 

  5. McRobcrts JA, Taub M, Saier MH. The Madin Darby canine kidney (MDCK) cell line. In: Sato G, Alan R. (ed) Functionally Differentiated Cell Lines, New York, 1981;117–139.

  6. Herzlinger DA, Easton TG, Ojakian GK. The MDCK cell line expresses a cell surface antigen of the kidney distal tubule. J Cell Biol 1982;93:269–277.

    Article  CAS  PubMed  Google Scholar 

  7. Rindler MJ, Chuman LM, Shaffer L, Saier MH Jr. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J Cell Biol 1979;81:635–648.

    Article  CAS  PubMed  Google Scholar 

  8. Valentich JD. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting duct. Ann N Y Acad Sci 1981;372:384–405.

    Article  CAS  PubMed  Google Scholar 

  9. Berecek KH, Brody MJ. Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla. Am J Physiol 1982;242: H593–H601

    CAS  PubMed  Google Scholar 

  10. Outshoorn AS. The hormones of the adrenal medulla and their release. Br J Pharmacol Chemotherap 1952;7: 605–615.

    Article  Google Scholar 

  11. Raymondos K, Panning B, Leuwer M, Brechelt G, Korte T, Niehaus M, Tebbenjohanns J, Piepenbrock S. Absorption and hemodynamic effects of airway administration of adrenaline in patients with severe cardiac disease. Ann Intern Med 2000;132:800–803

    Article  CAS  PubMed  Google Scholar 

  12. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocs 2006;1:1112–1116

    Article  CAS  Google Scholar 

  13. Xiao JX, Huang GQ, Zhu CP, Ren DD, Zhang SH. Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicol In Vitro 2007;21:820–826.

    Article  CAS  PubMed  Google Scholar 

  14. Heckman C, Kanagasundaram S, Cayer M, Paige J. Preparation of cultured cells for scanning electron microscope. Protocol Exchange 2007;doi: 10.1038/nprot.2007.504.

    Google Scholar 

  15. Merante F, Raha S, Ling M. Isolation of Total Cellular DNA from Tissues and Cultured Cells. Molecular Biomethods Handbook. pp 9–16, 1998.

    Chapter  Google Scholar 

  16. Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL. A Bax-induced pro-oxidant state is critical for cytochrome release during programmed neuronal death. J Neurosci 2002;22: 6480–90.

    CAS  PubMed  Google Scholar 

  17. Muthuraman P, Muthuviveganandavel V, Kim DH. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 2015;175: 1270–1280.

    Article  Google Scholar 

  18. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45

  19. Yeh CC, Kuo HM, Li TM, Lin JP, Yu FS, Lu HF, Chung JG, Yang JS. Shikonininduced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo 2007;21:1011–1019.

    CAS  PubMed  Google Scholar 

  20. Potter DE, Rowland JM. Adrenergic drugs and intraocular pressure. GenPharmcol 1981;12: l–13

    Google Scholar 

  21. Rodger IW, Bowman WC. Adrenoceptors in skeletal muscle. Tunas G (ed) In Adrenoceptors and Catecholamine Action, John Wiley. New York. 1983;pp123–55.

    Google Scholar 

  22. Tattona NA, Rideout HJ. Confocal microscopy as a tool to examine DNA fragmentation, chromatin condensation and other apoptotic changes in Parkinson’s disease. Parkinsonism and Related Disorders 1999;5:179–186.

    Article  Google Scholar 

  23. Frankfurt OS, Krishan A. Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 2003;14:555–561.

    Article  CAS  PubMed  Google Scholar 

  24. Compton MM. A biochemical hallmark of apoptosis:internucleosomal degradation of the genome. Cancer Metastasis Rev 1992;11:105–119.

    Article  CAS  PubMed  Google Scholar 

  25. Adelstein RS, Scordilis SP, Trotter JA. The cytoskeleton and cell movement: general considerations. Meth chiev Exp Pathol 1979;8: l–41.

    Google Scholar 

  26. Weihing RR. The cytoskeleton and plasma membrane. Meth Achiev Exp Pathol 1979;8:42–109.

    CAS  Google Scholar 

  27. Sanger JW, Sanger JM. The cytoskeleton and cell division. Meth Achirv Exp Pathol 1979;8:110–42.

    CAS  Google Scholar 

  28. Krejci L, Harrison R (1970) Epinephrine effects on cornea1 cells in tissue culture. Arch Ophthalmol 1970;83: 451–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell eath. Apoptosis 2007;12:913–922.

    Article  CAS  PubMed  Google Scholar 

  30. Rana SV. Metals and apoptosis: recent developments. J Trace Elem Med Biol 2008;22:262–284.

    Article  CAS  PubMed  Google Scholar 

  31. Farnebo M, Bykov VJ, Wiman KG. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 2010;396:85–89.

    Article  CAS  PubMed  Google Scholar 

  32. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770–776.

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Perez Y, ChirinoY I, Osornio-Vargas AR, Morales-Barcenas R, Gutierrez-Ruiz C, Vazquez-Lopez I, Garcia-Cuellar CM. DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 2009;278:192–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeasool Shim.

Additional information

These two authors contributed equally for the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuraman, P., Nagajyothi, P.C., Chandrasekaran, M. et al. Differential sensitivity of Madin-Darby canine kidney (MDCK) cells to epinephrine. J Nutr Health Aging 20, 486–493 (2016). https://doi.org/10.1007/s12603-015-0604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-015-0604-y

Key words

Navigation