Skip to main content
Log in

Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon has ultrahigh capacity, dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery. Owing to the low infiltration of solid-state electrolyte (SSE), not the unstable solid–electrolyte interphase (SEI), but the huge stress during lithiation- and delithiation-induced particle fracture and conductivity lost tend to be the main issues. In this study, starting with micron-Si, a novel monothetic carbon conductive framework and a MgO coating layer are designed, which serve as electron pathway across the whole electrode and stress releasing layer, respectively. In addition, the in situ reaction between Si and SSE helps to form a LiF-rich and mechanically stable SEI layer. As a result, the mechanical stability and charge transfer kinetics of the uniquely designed Si anode are significantly improved. Consequently, high initial Coulombic efficiency, high capacity and durable cycling stability can be achieved by applying the Si@MgO@C anode in SSB. For example, high specific capacity of 3224.6 mAh·g−1 and long cycling durability of 200 cycles are achieved. This work provides a new concept for designing alloy-type anode that combines surface coating on particle and electrode structure design.

Graphical abstract

摘要

改性微米硅负极上的单一导电网络和机械应力释放层实现高能量固态电池

韩响, 许敏, 顾岚汇, 兰超飞, 陈敏峰, 陆俊杰, 盛必福, 王鹏, 陈松岩, 陈继章

南京林业大学材料科学与工程学院, 林业资源高效加工利用协同创新中心 南京210037

摘要 硅具有超高的比容量、无枝晶和低成本的特点, 但与锂金属负极相比, 在固态电池的研究和设计中被低估。由于固态电解质(SSE)的低渗透性, 在锂化和脱锂过程中的巨大应力导致颗粒粉化和导电性损失往往是主要问题, 而不是不稳定的固体电解质界面(SEI)。在这篇论文中, 在微米级硅表面设计了一种单层碳导电框架, 它不仅提升了整个电极的高导电性, 而且改善了颗粒表面的电荷转移动力学。此外, 通过COMSOL建模和TEM分析证实, 陶瓷MgO涂层释放了体积膨胀产生的应力。结果, 独特设计的Si负极的机械稳定性和电荷转移动力学显著提高。因此, Si-MgO-C负极在在固态电池中, 表现出高的初始库仑效率、高容量和持久的循环稳定性。例如, 具有3224.6 mAh·g−1的高比容量和200次循环的长循环耐久性。这一工作为颗粒表面包覆和电极结构设计相结合的合金型负极设计提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2(4):1. https://doi.org/10.1038/natrevmats.2016.103.

    Article  CAS  Google Scholar 

  2. Wang N, Liu YY, Shi ZX, Yu ZL, Duan HY, Fang S, Yang JY, Wang XM. Electrolytic silicon/graphite composite from SiO2/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries. Rare Met. 2022;41(2);438. https://doi.org/10.1007/s12598-020-01702-z.

    Article  CAS  Google Scholar 

  3. Song SP, Yang C, Jiang CZ, Wu YM, Guo R, Sun H, Yang JL, Xiang Y, Zhang XK. Increasing ionic conductivity in Li0.33La0.56TiO3 thin-films via optimization of processing atmosphere and temperature. Rare Met. 2022;41(2):179. https://doi.org/10.1007/s12598-021-01782-5.

    Article  CAS  Google Scholar 

  4. Zhang D, Meng X, Hou W, Hu W, Mo J, Yang T, Zhang W, Fan Q, Liu L, Jiang B. Solid polymer electrolytes: ion conduction mechanisms and enhancement strategies. Nano Res Energy. 2023;2:e9120050. https://doi.org/10.26599/NRE.2023.9120050.

  5. Wu M, Zhang Y, Xu L, Yang C, Hong M, Cui M, Clifford BC, He S, Jing S, Yao Y, Hu L. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter. 2022;5(10):3402. https://doi.org/10.1016/j.matt.2022.07.015.

    Article  CAS  Google Scholar 

  6. Xu L, Meng T, Zheng X, Li T, Brozena AH, Mao Y, Zhang Q, Clifford BC, Rao J, Hu L. Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv Funct Mater. 2023:2302098. https://doi.org/10.1002/adfm.202302098.

  7. Xu L, Thompson CV. Mechanisms of the cyclic (de) lithiation of RuO2. J Mater Chem A. 2020;8(41):21872. https://doi.org/10.1039/D0TA06428A.

    Article  CAS  Google Scholar 

  8. Xu L, Chon MJ, Mills B, Thompson CV. Mechanical stress and morphology evolution in RuO2 thin film electrodes during lithiation and delithiation. J Power Sources. 2022;552: 232260. https://doi.org/10.1016/j.jpowsour.2022.232260.

    Article  CAS  Google Scholar 

  9. Bi X, Li M, Zhou G, Liu C, Huang R, Shi Y, Ge S. High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res. 2023;16(5):7696–709. https://doi.org/10.1007/s12274-023-5586-1.

    Article  ADS  CAS  Google Scholar 

  10. Ge S, Ouyang H, Ye H, Shi Y, Sheng Y, Peng W. High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Ma. 2023;6(1):44. https://doi.org/10.1007/s42114-023-00628-1.

    Article  CAS  Google Scholar 

  11. Randau S, Weber DA, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J. Zeier WG. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5(3):259. https://doi.org/10.1038/s41560-020-0565-1.

  12. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M. Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021;6(2):123. https://doi.org/10.1038/s41560-020-00748-8.

  13. Chen H, Yang Y, Boyle DT, Jeong YK, Xu R, de Vasconcelos LS, Huang Z, Wang H, Wang H, Huang W. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy. 2021;6(8):790. https://doi.org/10.1038/s41560-021-00833-6.

    Article  ADS  CAS  Google Scholar 

  14. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H. Wang C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187. https://doi.org/10.1038/s41560-018-0312-z.

  15. Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley GO, Marrow J. Bruce PG. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat materials. 2019;18(10):1105. https://doi.org/10.1038/s41563-019-0438-9.

  16. Krauskopf T, Richter FH, Zeier WG, Janek JR. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem Rev. 2020;120(15):7745. https://doi.org/10.1021/acs.chemrev.0c00431.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng XB, Huang JQ, Zhang Q. Li metal anode in working lithium-sulfur batteries. J Electrochem Soc. 2017;165(1):A6058. https://doi.org/10.1149/2.0111801jes.

    Article  CAS  Google Scholar 

  18. Chen B, Chen L, Zu L, Feng Y, Su Q, Zhang C, Yang J. Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries. Adv Mater. 2022;34(21): e2200894. https://doi.org/10.1002/adma.202200894.

    Article  CAS  PubMed  Google Scholar 

  19. Huo H, Janek JR. Silicon as emerging anode in solid-state batteries. ACS Energy Lett. 2022;7(11):4005. https://doi.org/10.1021/acsenergylett.2c01950.

    Article  CAS  Google Scholar 

  20. Li J, Dahn J. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc. 2007;154(3):A156. https://doi.org/10.1149/1.2409862.

    Article  CAS  Google Scholar 

  21. Liu Q, Hu Y, Yu X, Qin Y, Meng T. Hu X. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: a review. Nano Res Energy. 2022;1(3):e9120037. https://doi.org/10.26599/NRE.2022.9120037.

  22. Gu LH, Han JJ, Chen MF, Zhou WJ, Wang XF, Xu M, Lin H, Liu H, Chen H. Chen JZ. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Storage Mater. 2022;52:547. https://doi.org/10.1016/j.ensm.2022.08.028.

  23. Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347. https://doi.org/10.1007/s12598-021-01716-1.

    Article  CAS  Google Scholar 

  24. Yang Y, Yuan W, Kang W, Ye Y, Pan Q, Zhang X, Ke Y, Wang C, Qiu Z. Tang Y. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain Energy Fuels. 2020;4(4):1577. https://doi.org/10.1002/aenm.201700715.10.1039/c9se01165j.

  25. Zhang FZ, Ma YY, Jiang MM, Luo W, Yang JP. Boron heteroatom-doped silicon-carbon peanut-like composites enables long life lithium-ion batteries. Rare Met. 2022;41(4):1276. https://doi.org/10.1007/s12598-021-01741-0.

    Article  CAS  Google Scholar 

  26. Chen J, Fan XL, Li Q, Yang HB, Khoshi MR, Xu YB, Hwang S, Chen L, Ji X, Yang CY, He HX, Wang CM, Garfunkel E, Su D, Borodin O. Wang CS. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy. 2020;5(5):386. https://doi.org/10.1038/s41560-020-0601-1.

  27. Guo XB, Wang JC, Li GJ, Gao B, Bie CY, Zhang YP. Preparation and lithium-ion storage properties of vanadium nitride/nano silicon/carbon composite microspheres. Chin J Rare Met. 2022;46(6):829. https://doi.org/10.13373/j.cnki.cjrm.XY21090023.

    Article  Google Scholar 

  28. Han X, Zhou WJ, Chen MF, Chen JZ, Wang G, Liu B, Luo L, Chen S, Zhang Q, Shi S. Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J Energy Chem. 2022;67:727. https://doi.org/10.1016/j.jechem.2021.11.021.

    Article  CAS  Google Scholar 

  29. Chen FQ, Han JW, Kong DB, Yuan YF, Xiao J, Wu SC, Tang DM, Deng YQ, Lv W, Lu J, Kang FY, Yang QH. 1000 Wh L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl Sci Rev. 2021;8(9):nwab012. https://doi.org/10.1093/nsr/nwab012.

  30. Tan DH, Chen YT, Yang H, Bao W, Sreenarayanan B, Doux JM, Li W, Lu B, Ham SY, Sayahpour B, Scharf J, Wu EA, Deysher G, Han HE, Hah HJ, Jeong H, Lee JB, Chen Z, Meng YS. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science. 2021;373(6562):1494. https://doi.org/10.1126/science.abg7217.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Cao D, Sun X, Li Y, Anderson A, Lu W, Zhu H. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv Mater. 2022;34(24): e2200401. https://doi.org/10.1002/adma.202200401.

    Article  CAS  PubMed  Google Scholar 

  32. An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu PK, Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10(1):1447. https://doi.org/10.1038/s41467-019-09510-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imtiaz S, Amiinu IS, Storan D, Kapuria N, Geaney H, Kennedy T. Ryan KM. Dense silicon nanowire networks grown on a stainless-steel fiber cloth: a flexible and robust anode for lithium-ion batteries. Adv Mater. 2021;33(52):2105917. https://doi.org/10.1002/adma.202105917.

  34. Guo M, Zhu XY, Li MD, Zhu JL, Huang GJ, Li YY. Electrostatic self-assembly preparation of three-dimensional graphene coated red phosphorus for lithium-ion battery anode. Chin J Rare Met. 2022;46(8):1048. https://doi.org/10.13373/j.cnki.cjrm.XY21050015.

  35. Yi Z, Lin N, Zhao Y, Wang W, Qian Y, Zhu Y, Qian Y. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Mater. 2019;17:93. https://doi.org/10.1021/cm2034195.

    Article  CAS  Google Scholar 

  36. Lin D, Wu Z, Li S, Zhao W, Ma C, Wang J, Jiang Z, Zhong Z, Zheng Y, Yang X. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano. 2017;11(2):1478. https://doi.org/10.1021/acsnano.6b06778.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22209075) and the Natural Science Foundation of Jiangsu Province (BK20200800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Han or Ji-Zhang Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1462 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Xu, M., Gu, LH. et al. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery. Rare Met. 43, 1017–1029 (2024). https://doi.org/10.1007/s12598-023-02498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02498-4

Keywords

Navigation