Skip to main content
Log in

Recent advances in vacancy engineering for reliable lithium-sulfur batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The high-energy-density and low-cost features endow lithium-sulfur batteries with broad application prospects. However, many drawbacks, especially the detrimental shuttle effect, have hindered the further development of LSBs. In response, a lot of new structures have been applied to suppress the shuttle effect and promote the development of LSBs. Recently, vacancy engineering has gained the attention of researchers due to its unique electronic structure. This review aims to analyze the application of vacancy engineering in LSBs. Firstly, the electrochemistry of LSBs has been systematically discussed and the existing challenges as well as improvement tactics of LSBs have also been presented. Subsequently, the preparation methods and characterization technologies of various vacancies are summarized, including oxygen vacancies, sulfur vacancies, selenium vacancies, other anion vacancies, cation vacancies, etc. The latest applications of vacancy engineering in LSBs are also summarized in this review. Finally, some prospects and insights for further investigation and practical application of vacancy engineering in LSBs are put forward.

Graphical abtract

摘要

锂硫电池高能量密度和低成本的特点使其具有广阔的应用前景。然而,锂硫电池所存在的诸多问题,特别是穿梭效应,严重地阻碍了锂硫电池的进一步发展。因此,研究人员设计出许多新颖的功能材料用来抑制穿梭效应,促进锂硫电池的发展。近年来,空位工程因其独特的电子结构引起了研究人员的广泛关注,因此本文旨在分析空位工程在锂硫电池中的应用。首先,对锂硫电池的电化学机理进行了系统地论述,并提出了锂硫电池存在的挑战和改进策略。我们还总结了各种空位的制备方法和表征技术,包括氧空位、硫空位、硒空位、其他阴离子空位、阳离子空位等。随后,本文针对空位工程在锂硫电池中的最新应用进行了详细的论述。最后,对空位工程在锂硫电池中的进一步研究和实际应用提出了展望和见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu CX, Jiang JJ. Electrolytes speed up development of zinc batteries. Rare Met. 2021;40(4):749. https://doi.org/10.1007/s12598-020-01628-6.

    Article  CAS  Google Scholar 

  2. Yang K, Liu D, Qian Z, Jiang D, Wang R. Computational auxiliary for the progress of sodium-ion solid-state electrolytes. ACS Nano. 2021;15(11):17232. https://doi.org/10.1021/acsnano.1c07476.

    Article  CAS  Google Scholar 

  3. Jiang FN, Yang SJ, Chen ZX, Liu H, Yuan H, Liu L, Huang JQ, Cheng XB, Zhang Q. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells. Particuology. 2022. https://doi.org/10.1016/j.partic.2022.11.009.

    Article  Google Scholar 

  4. Deng W, Li Y, Xu D, Zhou W, Xiang K, Chen H. Three-dimensional hierarchically porous nitrogen-doped carbon from water hyacinth as selenium host for high-performance lithium-selenium batteries. Rare Met. 2022;41(10):3432. https://doi.org/10.1007/s12598-022-02022-0.

    Article  CAS  Google Scholar 

  5. Jiang Z, Wang Y, Chen X, Luo S, Wu F. Research Progresses of Iron-Based Fluoride Materials for Lithium Battery Cathodes. Chin J Rare Met. 2022;46(6):724. https://doi.org/10.13373/j.cnki.cjrm.XY21100029.

    Article  CAS  Google Scholar 

  6. Li X, Zhang X, Li T, Zhao X, Zhang X. Graphene nanoribbons wrapping carbon-coated SnO2 nanoparticles anchored on carbon nanotubes for high Li+ storage. J Alloys Compd. 2017;729:1064. https://doi.org/10.1016/j.jallcom.2017.09.186.

    Article  CAS  Google Scholar 

  7. Zhang H, Song J, Li J, Feng J, Ma Y, Ma L, Liu H, Qin Y, Zhao X, Wang F. Interlayer-expanded MoS2 nanoflowers vertically aligned on MXene@dual-phased TiO2 as high-performance anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2022;14(14):16300. https://doi.org/10.1021/acsami.2c02080.

    Article  CAS  Google Scholar 

  8. Jiang FN, Yang SJ, Cheng XB, Shi P, Ding JF, Chen X, Yuan H, Liu L, Huang JQ, Zhang Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. J Energy Chem. 2022;72:158. https://doi.org/10.1016/j.jechem.2022.05.005.

    Article  CAS  Google Scholar 

  9. Yang TQ, Wang C, Zhang WK, Xia Y, Gan YP, Huang H, He XP, Zhang J. Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Met. 2022;41(6):1870. https://doi.org/10.1007/s12598-021-01891-1.

    Article  CAS  Google Scholar 

  10. Tang T, Zhang L, Guo Z, Gu X. Development of Cathode and Anode Materials in Lithium Sulfur Batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

    Article  Google Scholar 

  11. Manthiram A, Chung SH, Zu C. Lithium-sulfur batteries: progress and prospects. Adv Mater. 2015;27(12):1980. https://doi.org/10.1002/adma.201405115.

    Article  CAS  Google Scholar 

  12. Bhargav A, He J, Gupta A, Manthiram A. Lithium-sulfur batteries: attaining the critical metrics. Joule. 2020;4(2):285. https://doi.org/10.1016/j.joule.2020.01.001.

    Article  Google Scholar 

  13. Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat Energy. 2022;7(4):312. https://doi.org/10.1038/s41560-022-01001-0.

    Article  CAS  Google Scholar 

  14. Zhu Q, Xu H, Shen K, Zhang Y, Li B, Yang S. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  15. Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang QH. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv Sci. 2018;5(1):1700270. https://doi.org/10.1002/advs.201700270.

    Article  CAS  Google Scholar 

  16. Zhang T, Zhang L, Hou Y. MXenes: synthesis strategies and lithium-sulfur battery applications. eScience. 2022;2(2):164. https://doi.org/10.1016/j.esci.2022.02.010.

    Article  CAS  Google Scholar 

  17. Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed. 2020;59(31):12636. https://doi.org/10.1002/anie.201909339.

    Article  CAS  Google Scholar 

  18. Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energ Environ Sci. 2011;4(12):5053. https://doi.org/10.1039/c1ee02256c.

    Article  CAS  Google Scholar 

  19. Lee JS, Kim W, Jang J, Manthiram A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv Energy Mater. 2017;7(5):1601943. https://doi.org/10.1002/aenm.201601943.

    Article  CAS  Google Scholar 

  20. Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem Commun. 2012;48(34):4097. https://doi.org/10.1039/c2cc17925c.

    Article  CAS  Google Scholar 

  21. Wang D, Zhao Z, Wang P, Wang S, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;41(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

    Article  CAS  Google Scholar 

  22. Song J, Guo X, Zhang J, Chen Y, Zhang C, Luo L, Wang F, Wang G. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J Mater Chem A. 2019;7(11):6507. https://doi.org/10.1039/c9ta00212j.

    Article  CAS  Google Scholar 

  23. Zhang Y, Gao Z, Song N, He J, Li X. Graphene and its derivatives in lithium-sulfur batteries. Mater Today Energy. 2018;9:319. https://doi.org/10.1016/j.mtener.2018.06.001.

    Article  Google Scholar 

  24. Song J, Zhang C, Guo X, Zhang J, Luo L, Liu H, Wang F, Wang G. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. J Mater Chem A. 2018;6(34):16610. https://doi.org/10.1039/c8ta04800b.

    Article  CAS  Google Scholar 

  25. Ye C, Zhang L, Guo C, Li D, Vasileff A, Wang H, Qiao SZ. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv Funct Mater. 2017;27(33):1702524. https://doi.org/10.1002/adfm.201702524.

    Article  CAS  Google Scholar 

  26. Xu K, Liang X, Wang LL, Wang Y, Yun JF, Sun Y, Xiang HF. Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium-sulfur batteries. Rare Met. 2021;40(10):2810. https://doi.org/10.1007/s12598-020-01686-w.

    Article  CAS  Google Scholar 

  27. Yang X, Zu H, Luo L, Zhang H, Li J, Yi X, Liu H, Wang F, Song J. Synergistic tungsten oxide/N, S co-doped carbon nanofibers interlayer as anchor of polysulfides for high-performance lithium-sulfur batteries. J Alloys Compd. 2020. https://doi.org/10.1016/j.jallcom.2020.154969.

    Article  Google Scholar 

  28. Deng W, Xu Z, Deng Z, Wang X. Enhanced polysulfide regulation via honeycomb-like carbon with catalytic MoC for lithium-sulfur batteries. J Mater Chem A. 2021;9(38):21760. https://doi.org/10.1039/d1ta05536d.

    Article  CAS  Google Scholar 

  29. Zhou S, Liu J, Xie F, Zhao Y, Mei T, Wang Z, Wang X. A “boxes in fibers” strategy to construct a necklace-like conductive network for high-rate and high-loading lithium-sulfur batteries. J Mater Chem A. 2020;8(22):11327. https://doi.org/10.1039/d0ta04089d.

    Article  CAS  Google Scholar 

  30. Zhu Q, Xu H, Shen K, Zhang Y, Li B, Yang S. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-022-01989-0.

    Article  CAS  Google Scholar 

  31. Zheng N, Jiang G, Chen X, Mao J, Jiang N, Li Y. Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium-sulfur batteries. Nano-Micro Lett. 2019;11(1):43. https://doi.org/10.1007/s40820-019-0275-z.

    Article  CAS  Google Scholar 

  32. Feng J, Li Y, Yuan J, Zhao Y, Zhang J, Wang F, Tang J, Song J. Energy-saving synthesis of functional CoS2/rGO interlayer with enhanced conversion kinetics for high-performance lithium-sulfur batteries. Front Chem. 2022. https://doi.org/10.3389/fchem.2021.830485.

    Article  Google Scholar 

  33. Zuo J, Zhai P, He Q, Wang L, Chen Q, Gu X, Yang Z, Gong Y. In-situ constructed three-dimensional MoS2-MoN heterostructure as the cathode of lithium-sulfur battery. Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  34. Li R, Peng H, Wu Q, Zhou X, He J, Shen H, Yang M, Li C. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew Chem Int Ed. 2020;59(29):12129. https://doi.org/10.1002/anie.202004048.

    Article  CAS  Google Scholar 

  35. Tian Y, Li G, Zhang Y, Luo D, Wang X, Zhao Y, Liu H, Ji P, Du X, Li J, Chen Z. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv Mater. 2020;32(4):1904876. https://doi.org/10.1002/adma.201904876.

    Article  CAS  Google Scholar 

  36. Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147. https://doi.org/10.1007/s12598-021-01750-z.

    Article  CAS  Google Scholar 

  37. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ. In-situ constructed three-dimensional MoS2-MoN heterostructure as the cathode of lithium-sulfur battery. Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  38. Shi Z, Li M, Sun J, Chen Z. Defect engineering for expediting Li-S chemistry: strategies, mechanisms, and perspectives. Adv Energy Mater. 2021. https://doi.org/10.1002/aenm.202100332.

    Article  Google Scholar 

  39. Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S, Liu B, Li B, Kang F, Yang QH. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energ Environ Sci. 2017;10(7):1694. https://doi.org/10.1039/c7ee01430a.

    Article  CAS  Google Scholar 

  40. Li S, Liu JC, Ma LL, Yu LJ, Hou LL, Li DM, Gao SW, Yue GC, Cui ZM, Wang N, Zhao XX, Zhao Y. Okra-like multichannel TiO@NC fibers membrane with spatial and chemical restriction on shuttle-effect for lithium-sulfur batteries. Adv Fiber Mater. 2023;2022(5):252. https://doi.org/10.1007/s42765-022-00217-9.

    Article  CAS  Google Scholar 

  41. Zhou F, Wang R, He S, Liu X, Liu S, Shao H, Liu X, Xiao Z, Liu J. Defect-rich hierarchical porous Mn-doped CoP hollow microspheres accelerate polysulfide conversion. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202211124.

    Article  Google Scholar 

  42. Zou K, Zhou T, Chen Y, Xiong X, Jing W, Dai X, Shi M, Li N, Sun J, Zhang S, Zhang C, Liu Y, Guo Z. Defect engineering in a multiple confined geometry for robust lithium-sulfur batteries. Adv Energy Mater. 2022;12(18):2103981. https://doi.org/10.1002/aenm.202103981.

    Article  CAS  Google Scholar 

  43. Chen H, Wu Z, Zheng M, Liu T, Yan C, Lu J, Zhang S. Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Mater Today. 2022;52:364. https://doi.org/10.1016/j.mattod.2021.10.026.

    Article  CAS  Google Scholar 

  44. Rashid A, Zhu X, Wang G, Ke C, Li S, Sun P, Hu Z, Zhang Q, Zhang L. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries. J Energy Chem. 2020;49:71. https://doi.org/10.1016/j.jechem.2020.01.031.

    Article  Google Scholar 

  45. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605. https://doi.org/10.1039/C5CS00410A.

    Article  CAS  Google Scholar 

  46. Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ. Lithium sulfur batteries, a mechanistic review. Energ Environ Sci. 2015;8(12):3477. https://doi.org/10.1039/C5EE01388G.

    Article  CAS  Google Scholar 

  47. Zhao WM, Shen JD, Xu XJ, He WX, Liu L, Chen ZH, Liu J. Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare Met. 2022;41(4):1080. https://doi.org/10.1007/s12598-021-01865-3.

    Article  CAS  Google Scholar 

  48. Zhao E, Nie K, Yu X, Hu YS, Wang F, Xiao J, Li H, Huang X. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries. Adv Funct Mater. 2018;28(38):1707543. https://doi.org/10.1002/adfm.201707543.

    Article  CAS  Google Scholar 

  49. Lin LW, Qi M, Bai ZT, Yan SX, Sui ZY, Han BH, Liu YW. Crumpled nitrogen-doped aerogels derived from MXene and pyrrole-formaldehyde as modified separators for stable lithium-sulfur batteries. Appl Surf Sci. 2021;555:149717. https://doi.org/10.1016/j.apsusc.2021.149717.

    Article  CAS  Google Scholar 

  50. Song X, Gao T, Wang S, Bao Y, Chen G, Ding LX, Wang H. Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries. J Power Sources. 2017;356:172. https://doi.org/10.1016/j.jpowsour.2017.04.093.

    Article  CAS  Google Scholar 

  51. Han X, Cai J, Wang X, Liu Y, Zhou H, Meng X. Understanding effects of conductive additives in lithium-sulfur batteries. Mater Today Commun. 2021;26:101934. https://doi.org/10.1016/j.mtcomm.2020.101934.

    Article  CAS  Google Scholar 

  52. Eftekhari A, Kim DW. Cathode materials for lithium-sulfur batteries: a practical perspective. J Mater Chem A. 2017;5(34):17734. https://doi.org/10.1039/c9ta90300c.

    Article  CAS  Google Scholar 

  53. Zhao G, Liu S, Zhang X, Zhang Y, Shi H, Liu Y, Hou L, Yuan C. Construction of Co@N-CNTs grown on N-MoxC nanosheets for separator modification to enhance adsorption and catalytic conversion of polysulfides in Li-S batteries. J Mater Chem A. 2023;11:1856. https://doi.org/10.1039/D2TA09123B.

    Article  CAS  Google Scholar 

  54. Tan Z, Liu S, Zhang X, Wei J, Liu Y, Hou L, Yuan C. Few-layered V2C MXene derived 3D V3S4 nanocrystal functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries. J Mater Chem A. 2022;10(36):18679. https://doi.org/10.1039/d2ta05602j.

    Article  CAS  Google Scholar 

  55. Geng C, Hua W, Wang D, Ling G, Zhang C, Yang QH. Demystifying the catalysis in lithium-sulfur batteries: characterization methods and techniques. SusMat. 2021;1(1):51. https://doi.org/10.1002/sus2.5.

    Article  CAS  Google Scholar 

  56. Li Z, Zhou Y, Wang Y, Lu YC. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater. 2019;9(1):1802207. https://doi.org/10.1002/aenm.201802207.

    Article  CAS  Google Scholar 

  57. Li J, Zhang H, Luo L, Li H, He J, Zu H, Liu L, Liu H, Wang F, Song J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J Mater Chem A. 2021;9(4):2205. https://doi.org/10.1039/d0ta10515e.

    Article  CAS  Google Scholar 

  58. Zhang Z, Dong Y, Gu Y, Lu P, Xue F, Fan Y, Zhu Z, Lin J, Li Q, Wu ZS. Graphene-nanoscroll-based Janus bifunctional separators suppress lithium dendrites and polysulfides shuttling synchronously in high-performance lithium-sulfur batteries. J Mater Chem A. 2022;10(17):9515. https://doi.org/10.1039/d2ta01515c.

    Article  CAS  Google Scholar 

  59. An Y, Cheng Y, Wang S, Yu J. Fluoride-rich solid electrolyte membrane in solid-state Li-S batteries: improvement of lithium cycle stability and shuttle effects. ACS Appl Energy Mater. 2022;5(3):2786. https://doi.org/10.1021/acsaem.1c03397.

    Article  CAS  Google Scholar 

  60. Li S, Lin J, Xiong W, Guo X, Wu D, Zhang Q, Zhu QL, Zhang L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev. 2021;438:213872. https://doi.org/10.1016/j.ccr.2021.213872.

    Article  CAS  Google Scholar 

  61. Tan K, Tan Z, Liu S, Zhao G, Liu Y, Hou L, Yuan C. Synergistic design of core-shell V3S4@C host and homogeneous catalysts promoting polysulfides chemisorption and conversion for Li-S batteries. J Mater Chem A. 2023. https://doi.org/10.1039/D2TA09373A.

    Article  Google Scholar 

  62. Luo YZ, Ye ZC, Mo LH, Li BY, Li SF. A freestanding nitrogen-doped MXene/graphene cathode for high-performance Li-S batteries. Nanoscale Adv. 2022;4(9):2189. https://doi.org/10.1039/d2na00072e.

    Article  CAS  Google Scholar 

  63. Gao M, Zhou WY, Mo YX, Sheng T, Deng Y, Chen L, Wang K, Tan Y, Zhou H. Outstanding long-cycling lithium-sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv Powder Mater. 2022;1(1):100006. https://doi.org/10.1016/j.apmate.2021.09.006.

    Article  Google Scholar 

  64. Liu BT, Li H, Shi C, Sun J, Xiao S, Pang Y, Yang J, Li Y. Multifunctional integrated VN/V2O5 heterostructure sulfur hosts for advanced lithium-sulfur batteries. Nanoscale. 2022;14(12):4557. https://doi.org/10.1039/d1nr08292b.

    Article  CAS  Google Scholar 

  65. Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano. 2017;11(2):2209. https://doi.org/10.1021/acsnano.6b08627.

    Article  CAS  Google Scholar 

  66. Song J, Su D, Xie X, Guo X, Bao W, Shao G, Wang G. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(43):29417. https://doi.org/10.1021/acsami.6b09027.

    Article  CAS  Google Scholar 

  67. Xiao R, Yang S, Yu T, Hu T, Zhang X, Xu R, Wang Y, Guo X, Sun Z, Li F. A Janus separator for inhibiting shuttle effect and lithium dendrite in lithium-sulfur batteries. Batter Supercaps. 2022;5(4):202100389. https://doi.org/10.1002/batt.202100389.

    Article  CAS  Google Scholar 

  68. Wang M, Sun Z, Ci H, Shi Z, Shen L, Wei C, Ding Y, Yang X, Sun J. Identifying the evolution of selenium-vacancy-modulated MoSe2 precatalyst in lithium-sulfur chemistry. Angew Chem Int Ed. 2021;60(46):24558. https://doi.org/10.1002/anie.202109291.

    Article  CAS  Google Scholar 

  69. Tian Y, Yang M, Wang C. Highly efficient flexible Li-S full batteries with hollow Ru-RuO2-x nanofibers as robust polysulfide anchoring-catalysts and lithium dendrite inhibitors. J Mater Chem A. 2022;10(16):8826. https://doi.org/10.1039/d2ta01573k.

    Article  CAS  Google Scholar 

  70. Kong Z, Huang M, Liang Z, Tu H, Zhang K, Shao Y, Wu Y, Hao X. Phosphorus doping induced the co-construction of sulfur vacancies and heterojunctions in tin disulfide as a durable anode for lithium/sodium-ion batteries. Inorg Chem Front. 2022;9(5):902. https://doi.org/10.1039/d1qi01536b.

    Article  CAS  Google Scholar 

  71. Li HJ, Xi K, Wang W, Liu S, Li GR, Gao XP. Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 2022;45:1229. https://doi.org/10.1016/j.ensm.2021.11.024.

    Article  Google Scholar 

  72. Ye KH, Li KS, Lu YR, Guo ZJ, Ni N, Liu H, Huang YC, Ji HB, Wang PS. An overview of advanced methods for the characterization of oxygen vacancies in materials. Trac-Trends Anal Chem. 2019;116:102. https://doi.org/10.1016/j.trac.2019.05.002.

    Article  CAS  Google Scholar 

  73. Zou K, Chen X, Jing W, Dai X, Wang P, Liu Y, Qiao R, Shi M, Chen Y, Sun J, Liu Y. Facilitating catalytic activity of indium oxide in lithium-sulfur batteries by controlling oxygen vacancies. Energy Storage Mater. 2022;48:133. https://doi.org/10.1016/j.ensm.2022.03.003.

    Article  Google Scholar 

  74. Go Y, Min K, An H, Kim K, Eun Shim S, Baeck SH. Oxygen-vacancy-rich CoFe/CoFe2O4 embedded in N-doped hollow carbon spheres as a highly efficient bifunctional electrocatalyst for Zn-air batteries. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2022.137665.

    Article  Google Scholar 

  75. Qi W, Yi W, Jiang W, Ling R, Yang C, Liu S, Jun SC, Yamauchi Y, Cao B. Interfacial assembled CeO2-x/Co@N-doped carbon hollow nanohybrids for high-performance lithium-sulfur batteries. ACS Sustain Chem Eng. 2021;9(43):14451. https://doi.org/10.1021/acssuschemeng.1c04708.

    Article  CAS  Google Scholar 

  76. Zhao L, Shen X, Ji L, Huang P. Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond. Adv Phys-X. 2022;7(1):1. https://doi.org/10.1080/23746149.2021.2004921.

    Article  Google Scholar 

  77. Wu J, Ma Q, Lian C, Yuan Y, Long D. Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries. Chem Eng J. 2019;370:556. https://doi.org/10.1016/j.cej.2019.03.078.

    Article  CAS  Google Scholar 

  78. Hu S, Yi M, Wu H, Wang T, Ma X, Liu X, Zhang J. Ionic-liquid-assisted synthesis of N, F, and B co-doped CoFe2O4-x on multiwalled carbon nanotubes with enriched oxygen vacancies for Li-S batteries. Adv Funct Mater. 2022;32(14):2111084. https://doi.org/10.1002/adfm.202111084.

    Article  CAS  Google Scholar 

  79. Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, Liu CJ. Catalyst preparation with plasmas: how does it work? ACS Catal. 2018;8(3):2093. https://doi.org/10.1021/acscatal.7b03723.

    Article  CAS  Google Scholar 

  80. Zhang X, Wan T, Jia A, Li J, Liu G, Sun D, Wang Y. Graphene oxide-wrapped cobalt-doped oxygen-deficient titanium dioxide hollow spheres clusters as efficient sulfur immobilizers for lithium-sulfur batteries. Electrochim Acta. 2021;397:139264. https://doi.org/10.1016/j.electacta.2021.139264.

    Article  CAS  Google Scholar 

  81. Deng S, Zhang Y, Xie D, Yang L, Wang G, Zheng X, Zhu J, Wang X, Yu Y, Pan G, Xia X, Tu J. Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy. 2019;58:355. https://doi.org/10.1016/j.nanoen.2019.01.051.

    Article  CAS  Google Scholar 

  82. Wang Y, Zhang R, Chen J, Wu H, Lu S, Wang K, Li H, Harris CJ, Xi K, Kumar RV, Ding S. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv Energy Mater. 2019;9(24):1900953. https://doi.org/10.1002/aenm.201900953.

    Article  CAS  Google Scholar 

  83. Gao Y, Bai Y, Sun R, Qu M, Wang M, Peng L, Wang Z, Sun W, Sun K. Advanced separator enabled by sulfur defect engineering for high-performance lithium-sulfur batteries. Ind Eng Chem Res. 2022;61(20):6957. https://doi.org/10.1021/acs.iecr.2c00634.

    Article  CAS  Google Scholar 

  84. Zhao Y, Cai W, Fang Y, Ao H, Zhu Y, Qian Y. Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem. 2019;6(8):2231. https://doi.org/10.1002/celc.201900269.

    Article  CAS  Google Scholar 

  85. Gao W, Jin Q, Liu Y, Zhang Y, Wang X, Bakenov Z. Promoting polysulfides redox conversion by sulfur-deficient ZnS1-x hollow polyhedrons for lithium-sulfur batteries. Mater Des. 2021. https://doi.org/10.1016/j.matdes.2021.110060.

    Article  Google Scholar 

  86. Xu R, Tang H, Zhou Y, Wang F, Wang H, Shao M, Li C, Wei Z. Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem Sci. 2022;13(21):6224. https://doi.org/10.1039/d2sc01353c.

    Article  CAS  Google Scholar 

  87. Li H, Gao R, Chen B, Zhou C, Shao F, Wei H, Han Z, Hu N, Zhou G. Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 2022;22(12):4999. https://doi.org/10.1021/acs.nanolett.2c01779.

    Article  CAS  Google Scholar 

  88. Mo F, Guo B, Ling W, Wei J, Chen L, Yu S, Liang G. Recent progress and challenges of flexible Zn-based batteries with polymer electrolyte. Batteries. 2022;8(6):59. https://doi.org/10.3390/batteries8060059.

    Article  CAS  Google Scholar 

  89. Li Y, Zhou Z, Li Y, Zhang Z, Guo X, Liu J, Mao C, Li Z, Li G. Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries. Nano Res. 2022;15(8):7234. https://doi.org/10.1007/s12274-022-4552-7.

    Article  CAS  Google Scholar 

  90. Luo M, Bai Y, Sun R, Qu M, Wang M, Yang Z, Wang Z, Sun W, Sun K. Enhancing anchoring and catalytic conversion of polysulfides by nitrogen deficient cobalt nitride for advanced lithium-sulfur batteries. J Energy Chem. 2022;73:407. https://doi.org/10.1016/j.jechem.2022.05.029.

    Article  CAS  Google Scholar 

  91. Sun R, Bai Y, Bai Z, Peng L, Luo M, Qu M, Gao Y, Wang Z, Sun W, Sun K. Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium-sulfur batteries. Adv Energy Mater. 2022;12(12):2102739. https://doi.org/10.1002/aenm.202102739.

    Article  CAS  Google Scholar 

  92. Shen Z, Zhang Z, Li M, Yuan Y, Zhao Y, Zhang S, Zhong C, Zhu J, Lu J, Zhang H. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano. 2020;14(6):6673. https://doi.org/10.1021/acsnano.9b09371.

    Article  CAS  Google Scholar 

  93. Yao W, Tian C, Yang C, Xu J, Meng Y, Manke I, Chen N, Wu Z, Zhan L, Wang Y, Chen R. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv Mater. 2022;34(11):2106370. https://doi.org/10.1002/adma.202106370.

    Article  CAS  Google Scholar 

  94. Mao L, Wang F, Mao J. ZnO with abundant Zn vacancies assisted by reduced graphene oxides for high-performance lithium-sulfur batteries. Diam Relat Mater. 2022;123:108851. https://doi.org/10.1016/j.diamond.2022.108851.

    Article  CAS  Google Scholar 

  95. Zhang Y, Li G, Wang J, Cui G, Wei X, Shui L, Kempa K, Zhou G, Wang X, Chen Z. Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv Funct Mater. 2020;30(22):2001165. https://doi.org/10.1002/adfm.202001165.

    Article  CAS  Google Scholar 

  96. Cheng Y, Huang J, Qi H, Cao L, Luo X, Li J, Xu Z, Yang J. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics. Nanoscale. 2017;9(47):18681. https://doi.org/10.1039/c7nr05556k.

    Article  CAS  Google Scholar 

  97. Hou W, Feng P, Guo X, Wang Z, Bai Z, Bai Y, Wang G, Sun K. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries. Adv Mater. 2022;34(26):2202222. https://doi.org/10.1002/adma.202202222.

    Article  CAS  Google Scholar 

  98. Kong L, Chen X, Li BQ, Peng HJ, Huang JQ, Xie J, Zhang Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv Mater. 2018;30(2):1705219. https://doi.org/10.1002/adma.201705219.

    Article  CAS  Google Scholar 

  99. Feng Y, Liu H, Liu Y, Zhao F, Li J, He X. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium-sulfur batteries. J Energy Chem. 2021;62:508. https://doi.org/10.1016/j.jechem.2021.04.008.

    Article  CAS  Google Scholar 

  100. Lin H, Zhang S, Zhang T, Ye H, Yao Q, Zheng GW, Lee JY. Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium-sulfur batteries. Adv Energy Mater. 2018;8(30):1801868. https://doi.org/10.1002/aenm.201801868.

    Article  CAS  Google Scholar 

  101. Salhabi EHM, Zhao J, Wang J, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew Chem Int Ed. 2019;58(27):9078. https://doi.org/10.1002/anie.201903295.

    Article  CAS  Google Scholar 

  102. Wang S, Wang Y, Song Y, Jia X, Yang J, Li Y, Liao J, Song H. Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering. Energy Storage Mater. 2021;43:422. https://doi.org/10.1016/j.ensm.2021.09.020.

    Article  Google Scholar 

  103. Yi Y, An H, Zhang P, Tian X, Yang P, Liu P, Wang T, Qu L, Li M, Yang G, Yang B. Oxygen deficiency driven conversion of polysulfide by electrocatalysis: MoO3-x nanobelts for an improved lithium-sulfur battery cathode. ChemNanoMat. 2019;5(7):926. https://doi.org/10.1002/cnma.201900157.

    Article  CAS  Google Scholar 

  104. Xu L, Zhao H, Sun M, Huang B, Wang J, Xia J, Li N, Yin D, Luo M, Luo F, Du Y, Yan C. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries. Angew Chem Int Ed. 2019;58(33):11491. https://doi.org/10.1002/anie.201905852.

    Article  CAS  Google Scholar 

  105. Qiao S, Wang Q, Lei D, Shi X, Zhang Q, Huang C, Liu A, He G, Zhang F. Oxygen vacancy enabled fabrication of dual-atom Mn/Co catalysts for high-performance lithium-sulfur batteries. J Mater Chem A. 2022;10(21):11702. https://doi.org/10.1039/d2ta01107g.

    Article  CAS  Google Scholar 

  106. Lv K, Wang P, Wang C, Shen Z, Lu Z, Zhang H, Zheng M, He P, Zhou H. Oxygen-deficient ferric oxide as an electrochemical cathode catalyst for high-energy lithium-sulfur batteries. Small. 2020;16(22):2000870. https://doi.org/10.1002/smll.202000870.

    Article  CAS  Google Scholar 

  107. Wang HE, Yin K, Qin N, Zhao X, Xia FJ, Hu ZY, Guo G, Cao G, Zhang W. Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J Mater Chem A. 2019;7(17):10346. https://doi.org/10.1039/c9ta01598a.

    Article  CAS  Google Scholar 

  108. Li Y, Zhang X, Liu G, Gerhardt A, Evans K, Jia A, Zhang Z. Oxygen-deficient titanium dioxide supported cobalt nano-dots as efficient cathode material for lithium-sulfur batteries. J Energy Chem. 2020;48:390. https://doi.org/10.1016/j.jechem.2020.02.028.

    Article  Google Scholar 

  109. Hao Z, Zeng R, Yuan L, Bing Q, Liu J, Xiang J, Huang Y. Perovskite La0.6Sr0.4CoO3-δ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano Energy. 2017;40:360. https://doi.org/10.1016/j.nanoen.2017.08.039.

    Article  CAS  Google Scholar 

  110. Luo D, Li G, Deng YP, Zhang Z, Li J, Liang R, Li M, Jiang Y, Zhang W, Liu Y, Lei W, Yu A, Chen Z. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries. Adv Energy Mater. 2019;9(18):1900228. https://doi.org/10.1002/aenm.201900228.

    Article  CAS  Google Scholar 

  111. Chen G, Li J, Liu N, Zhao Y, Tao J, Kalimuldina G, Bakenov Z, Zhang Y. Synthesis of nitrogen-doped oxygen-deficient TiO2-x/reduced graphene oxide/sulfur microspheres via spray drying process for lithium-sulfur batteries. Electrochim Acta. 2019;326:134968. https://doi.org/10.1016/j.electacta.2019.134968.

    Article  CAS  Google Scholar 

  112. Zhang Y, Si Y, Guo W, Li X, Tang S, Zhang Z, Wang X, Fu Y. In situ synthesis of vacancy-rich titanium sulfide confined in a hollow carbon nanocage as an efficient sulfur host for lithium-sulfur batteries. ACS Appl Energy Mater. 2021;4(9):10104. https://doi.org/10.1021/acsaem.1c02020.

    Article  CAS  Google Scholar 

  113. Li X, Guo G, Qin N, Deng Z, Lu Z, Shen D, Zhao X, Li Y, Su BL, Wang HE. SnS2/TiO2 nanohybrids chemically bonded on nitrogen-doped graphene for lithium-sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale. 2018;10(33):15505. https://doi.org/10.1039/c8nr04661a.

    Article  CAS  Google Scholar 

  114. Ye Z, Jiang Y, Li L, Wu F, Chen R. Synergetic anion vacancies and dense heterointerfaces into bimetal chalcogenide nanosheet arrays for boosting electrocatalysis sulfur conversion. Adv Mater. 2022;34(13):2109552. https://doi.org/10.1002/adma.202109552.

    Article  CAS  Google Scholar 

  115. Razaq R, Sun D, Wang J, Xin Y, Abbas G, Zhang J, Li Q, Huang T, Zhang Z, Huang Y. Ultrahigh sulfur loading in ZnS1-x /rGO through in situ oxidation-refilling route for high-performance Li S batteries. J Power Sources. 2019;414:453. https://doi.org/10.1016/j.jpowsour.2019.01.038.

    Article  CAS  Google Scholar 

  116. Qiu S, Liang X, Niu S, Chen Q, Wang G, Chen M. Quantitative defect regulation of heterostructures for sulfur catalysis toward fast and long lifespan lithium-sulfur batteries. Nano Res. 2022;15(9):7925. https://doi.org/10.1007/s12274-022-4453-9.

    Article  CAS  Google Scholar 

  117. Wu H, Jiang H, Yang Y, Hou C, Zhao H, Xiao R, Wang H. Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium-sulfur batteries. J Mater Chem A. 2020;8(29):14498. https://doi.org/10.1039/d0ta05249c.

    Article  CAS  Google Scholar 

  118. Yi Y, Li H, Chang H, Yang P, Tian X, Liu P, Qu L, Li M, Yang B, Li H, Zhu W, Dai S. Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium-sulfur batteries. Chem-Eur J. 2019;25(34):8112. https://doi.org/10.1002/chem.201900884.

    Article  CAS  Google Scholar 

  119. Chen L, Yu S, Zhang Y, Song Y, Song L. Manipulating electrocatalytic activity of carbon architecture by supercritical carbon dioxide foaming and defect engineering for Li-S chemistry. J Power Sources. 2021;514:230607. https://doi.org/10.1016/j.jpowsour.2021.230607.

    Article  CAS  Google Scholar 

  120. Kang X, Dong Y, Guan H, Al-Tahan MA, Zhang J. Manipulating the electrocatalytic activity of sulfur cathode via distinct cobalt sulfides as sulfur host materials in lithium-sulfur batteries. J Colloid Interface Sci. 2022. https://doi.org/10.1016/j.jcis.2022.04.156.

    Article  Google Scholar 

  121. Zeng P, Yu H, Zhou X, Zhou Z, Li B, Chen M, Shu H, Wang Y, Chang B, Guo X, Wang X. Creating anion defects on hollow CoxNi1-xO concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chem Eng J. 2022;427:132024. https://doi.org/10.1016/j.cej.2021.132024.

    Article  CAS  Google Scholar 

  122. Park K, Gil B, Jiwan Yun A, Cho J, Kim J, Park B. Mixed-valence iron phosphate as an effective catalytic host for the high-rate lithium-sulfur battery. Chem Eng J. 2022;435:134814. https://doi.org/10.1016/j.cej.2022.134814.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Qingdao Post-doctoral Applied Research Project (No. QDBSH20220202040), the Natural Science Foundation of Shandong Province, China (No. ZR2021QE192), and the Postdoctoral Science Foundation of China (No. 2018M63074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Yue Zhang, Xiao-Xian Zhao or Jian-Jun Song.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WD., Tang, X., Feng, JA. et al. Recent advances in vacancy engineering for reliable lithium-sulfur batteries. Rare Met. 43, 455–477 (2024). https://doi.org/10.1007/s12598-023-02417-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02417-7

Keywords

Navigation