Skip to main content
Log in

Mechanism of Li+/Na+ separation by crown ether and butyrate acid root

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium is critical for economic growth since it is the primary component of batteries. Na+ is one of the main impurity ions in solution during the separation and enrichment of Li+. According to the size-matching effect between the cavities of crown ethers and Li+, crown ethers can selectively adsorb Li+. Herein, 1,8-dihydroxyl-4,4,5,5-tetramethylbenzo-14-crown-4 was synthesized and used to extract lithium from a Li+/Na+ mixed solution. Density functional theory (DFT) was used to explore the properties of complexes with M062X. The results show that the interactions between crown ethers and metal ions are due to electrostatic attraction. Hydroxyl functional groups can synergistically extract Li+/Na+ from solutions with the oxygen atom in the crown ether ring. The stability of the complex is also enhanced by van der Waals interactions between the butyrate acid root and crown ether. 1,8-dihydroxyl-4,4,5,5-tetramethylbenzo-14-crown-4 has a stronger interaction with lithium butyrate than with sodium butyrate for most conformations. The adsorption selectivity for Li+ is proportional to the number of ether oxygen atoms that interact with Li+. The Li+ extraction efficiency increases from 3.93% to 20.93% in lithium hydroxide solution with the presence of butyrate acid root. When the butyrate acid root is added to the mixed Li+/Na+ solution, the Li+ extraction efficiency increases from 6.54% to 31.20%, while the Li+/Na+ separation coefficient decreases from 33.25 to 1.32.

Graphical abstract

摘要:

锂作为电池的主要成分, 对经济增长至关重要。Na+是Li+分离和富集过程中的主要杂质离子之一。根据冠醚的空腔与Li+之间的尺寸匹配效应, 冠醚对Li+具有选择性的吸附能力。本文合成了1,8-dihydroxyl-4,4,5,5-tetramethylbenzo-14-crown-4, 用于从Li+/Na+混合溶液中提取锂。利用密度泛函理论 (M062X) 研究了络合机理, 结果表明冠醚与金属离子之间的相互作用是静电吸引作用。羟基官能团中的氧原子可以与冠醚环中的氧原子协同提取溶液中的Li+/Na+, 丁酸根与冠醚之间的范德华相互作用也增强了配合物的稳定性。1,8-dihydroxyl-4,4,5,5-tetramethylbenzo-14-crown-4构象与丁酸锂的相互作用强于与丁酸钠的相互作用, 且冠醚对Li+的选择性吸附能力与醚氧原子的数量成正比。在丁酸根的存在下, LiOH溶液中Li+的萃取效率从3.93%提高到20.93%。Li+和Na+的混合溶液中加入丁酸根时, Li+的萃取效率从6.54%提高到31.20%, 但Li+/Na+的分离系数从33.25下降到1.32。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan MC, Wozny J, Gong J, Kang YQ, Wang XS, Zhang ZX, Zhou GM, Zhao Y, Li BH, Kang FY. Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process. Rare Met. 2022;41(6):1843. https://doi.org/10.1007/s12598-021-01918-7.

    Article  CAS  Google Scholar 

  2. Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;37(11):929. https://doi.org/10.1007/s12598-018-1129-4.

    Article  CAS  Google Scholar 

  3. Chen X, Bai YK, Zhao CZ, Shen X, Zhang Q. Lithium bonds in lithium batteries. Angew Chem Int Ed. 2020;59(28): 11192. https://doi.org/10.1002/anie.201915623.

    Article  CAS  Google Scholar 

  4. Zhou HP, Hu J, Zhang YB, Cao YJ, Luo XP, Tang XK. Effectively enhancing recovery of fine spodumene via aggregation flotation. Rare Met. 2020;39(3):316. https://doi.org/10.1007/s12598-019-01365-5.

    Article  CAS  Google Scholar 

  5. Xu P, Hong J, Qian X, Xu Z, Xia H, Tao X, Xu Z, Ni QQ. Materials for lithium recovery from salt lake brine. J Mater Sci. 2021;56(1):16. https://doi.org/10.1007/s10853-020-05019-1.

    Article  CAS  Google Scholar 

  6. Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan JF. Spodumene: the lithium market, resources and processes. Minerals. 2019;9(6):334. https://doi.org/10.3390/min9060334.

    Article  CAS  Google Scholar 

  7. Lai XR, Xiong P, Zhong H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization-precipitation method. Hydrometallurgy. 2020;192: 105252. https://doi.org/10.1016/j.hydromet.2020.105252.

    Article  CAS  Google Scholar 

  8. Luo Q, Dong M, Nie G, Liu Z, Wu Z, Li J. Extraction of lithium from salt lake brines by granulated adsorbents. Colloids Surf A. 2021;628:127256. https://doi.org/10.1016/j.colsurfa.2021.127256.

    Article  CAS  Google Scholar 

  9. Feng Y, Peng H, Zhao Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine. Sep Purif Technol. 2022;280:119848. https://doi.org/10.1016/j.seppur.2021.119848.

    Article  CAS  Google Scholar 

  10. Swain B. Recovery and recycling of lithium: a review. Sep Purif Technol. 2017;172(172):388. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  11. Pedersen CJ. Cyclic polyethers, their complexes with metal salts. J Am Chem Soc. 1967;89(26):7017. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  12. Tian Y, Chen W, Zhao Z, Xu L, Tong B. Interaction and selectivity of 14-crown-4 derivatives with Li+, Na+, and Mg2+ metal ions. J Mol Model. 2020;26(4):67. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  13. Salvio R, D’Abramo M. Conformational mobility and efficiency in supramolecular catalysis. A computational approach to evaluate the performances of enzyme mimics. Eur J Org Chem. 2020;2020(37):6004. https://doi.org/10.1002/ejoc.202001022.

    Article  CAS  Google Scholar 

  14. Sappidi P, Boda A, Ali SM, Singh JK. Adsorption of gadolinium (Gd3+) ions on the dibenzo crown ether (DBCE) and dicyclo hexano crown ether (DCHCE) grafted on the polystyrene surface: insights from all atom molecular dynamics simulations and experiments. J Phys Chem C. 2019;123(19):12276. https://doi.org/10.1021/acs.jpcc.9b01722.

    Article  CAS  Google Scholar 

  15. Fang A, Kroenlein K, Riccardi D, Smolyanitsky A. Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nat Mater. 2019;18(1):76. https://doi.org/10.1038/s41563-018-0220-4.

    Article  CAS  Google Scholar 

  16. Nakatsuji Y, Wakita R, Harada Y, Okahara M. New type of ionophores for lithium ion: N-pivot lariat ethers based on monoaza-14-crown-4. J Org Chem. 1989;54(12):2988. https://doi.org/10.1021/JO00273A045.

    Article  CAS  Google Scholar 

  17. Liu Y, Inoue Y, Hakushi T. Molecular design of crown ethers. VII. Syntheses and cation selectivities of unsubstituted 12- to 16-crown-4. Bull Chem Soc Jpn. 1990;63(10):3044. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  18. Bartsch RA, Czech BP, Kang SI, Stewart LE, Walkowiak W, Charewicz WA, Heo GS, Son B. High lithium selectivity in competitive alkali metal solvent extraction by lipophilic crown carboxylic acids. J Am Chem Soc. 1985;107(17):4997. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  19. Ren Z, Wei X, Li R, Wang W, Wang Y, Zhou Z. Highly selective extraction of lithium ions from salt lake brines with sodium tetraphenylborate as co-extractant. Sep Purif Technol. 2021;269:118756. https://doi.org/10.1016/j.seppur.2021.118756.

    Article  CAS  Google Scholar 

  20. Su H, Tan B, Zhang J, Liu W, Wang L, Wang Y, Zhu Z, Qi T. Modelling of lithium extraction with TBP/P507–FeCl3 system from salt-lake brine. Sep Purif Technol. 2021;282:120110. https://doi.org/10.1016/j.seppur.2021.120110.

    Article  CAS  Google Scholar 

  21. Hayashita T, Lee JH, Hankins MG, Lee JC, Kim JS, Knobeloch JM, Bartsch RA. Selective sorption and column concentration of alkali-metal cations by carboxylic acid resins with dibenzo-14-crown-4 subunits and their acyclic polyether analogs. Anal Chem. 1992;64(7):815. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  22. Warnock SJ, Sujanani R, Zofchak ES, Bates CM. Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. Proc Natl Acad Sci USA. 2021;118(37): e2022197118. https://doi.org/10.1073/pnas.2022197118.

    Article  CAS  Google Scholar 

  23. Li X, Mo Y, Qing W, Shao S, Tang CY, Li J. Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci. 2019;591:117317. https://doi.org/10.1016/j.memsci.2019.117317.

    Article  CAS  Google Scholar 

  24. Cheng Q, Zhang Y, Zheng X, Sun W, Li B, Wang D, Li Z. High specific surface crown ether modified chitosan nanofiber membrane by low-temperature phase separation for efficient selective adsorption of lithium. Sep Purif Technol. 2021;262:118312. https://doi.org/10.1016/j.seppur.2021.118312.

    Article  CAS  Google Scholar 

  25. Sun D, Zhu Y, Meng M, Qiao Y, Yan Y, Li C. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion. Sep Purif Technol. 2017;175:19. https://doi.org/10.1016/j.seppur.2016.11.029.

    Article  CAS  Google Scholar 

  26. Xu SS, Song JF, Bi Q, Chen Q, Zhang WM, Qian Z, Zhang L, Xu S, Tang N, He T. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice. J Membr Sci. 2021;635:119441. https://doi.org/10.1016/j.memsci.2021.119441.

    Article  CAS  Google Scholar 

  27. Yang Q, Li L, Gao XL, Wu HY, Liu FH, Zhang QG, Zhu AM, Zhao CH, Liu QL. Crown ether bridged anion exchange membranes with robust alkaline durability. J Membr Sci. 2019;578:230. https://doi.org/10.1016/j.memsci.2019.02.038.

    Article  CAS  Google Scholar 

  28. Zhu Q, Ma X, Pei H, Li J, Yan F, Cui Z, Wang H, Li J. A highly-efficient lithium adsorptive separation membrane derived from a polyimide-containing dibenzo-14-crown-4 moiety. Sep Purif Technol. 2020;247:116940. https://doi.org/10.1016/j.seppur.2020.116940.

    Article  CAS  Google Scholar 

  29. Li L, Feng M, Wang M, Jiao Z, Li J, Dong L, Yan F. Crown ether functionalized polysulfone membrane coupling with electric field for Li+ selective separation. J Taiwan Inst Chem Eng. 2021;123:87. https://doi.org/10.1016/j.jtice.2021.05.041.

    Article  CAS  Google Scholar 

  30. Thirumoorthy K, Thimmakondu VS. Flat crown ethers with planar tetracoordinate carbon atoms. Int J Quantum Chem. 2020;121(5): e26479. https://doi.org/10.1002/qua.26479.

    Article  CAS  Google Scholar 

  31. Reuter K, Rudel SS, Buchner MR, Kraus F, von Hanisch C. Crown ether complexes of alkali-metal chlorides from SO2. Chem Eur J. 2017;23(40):9607. https://doi.org/10.1002/chem.201701174.

    Article  CAS  Google Scholar 

  32. Orenha RP, Nagurniak GR, Colaco MC, Caramori GF, Piotrowski MJ, de Araujo Batista KE, Munoz-Castro A, de Almeida SB, Esteves BJ, Parreira RLT. The simultaneous recognition mechanism of cations and anions using macrocyclic-iodine structures: insights from dispersion-corrected DFT calculations. Phys Chem Chem Phys. 2020;22(41):23795. https://doi.org/10.1039/d0cp04291a.

    Article  CAS  Google Scholar 

  33. Rodriguez JD, Vaden TD, Lisy JM. Infrared spectroscopy of ionophore-model systems: hydrated alkali metal ion 18-crown-6 ether complexes. J Am Chem Soc. 2009;131(47):17277. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  34. Rodriguez JD, Lisy JM. Probing ionophore selectivity in argon-tagged hydrated alkali metal ion-crown ether systems. J Am Chem Soc. 2011;133(29):11136. https://doi.org/10.1021/ja107383c.

    Article  CAS  Google Scholar 

  35. Inokuchi Y, Boyarkin OV, Kusaka R, Haino T, Ebata T, Rizzo TR. UV and IR spectroscopic studies of cold alkali metal ion-crown ether complexes in the gas phase. J Am Chem Soc. 2011;133(31):12256. https://doi.org/10.1021/ja2046205.

    Article  CAS  Google Scholar 

  36. López JC, Pérez C, Blanco S, Shubert VA, Temelso B, Shields GC, Schnell M. Water induces the same crown shapes as Li+ or Na+ in 15-crown-5 ether: a broadband rotational study. Phys Chem Chem Phys. 2019;21(6):2875. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  37. Gholiee Y, Salehzadeh S. The solvent effect on selectivity of four well-known cryptands and crown ethers toward Na+ and K+ cations; a computational study. J Mol Liq. 2020;309: 113149. https://doi.org/10.1016/j.molliq.2020.113149.

    Article  CAS  Google Scholar 

  38. Sambe K, Hoshino N, Takeda T, Nakamura T, Akutagawa T. Dynamics and structural diversity of Li+(crown ether) supramolecular cations in electrically conducting salts. J Phys Chem C. 2020;124(25):13560. https://doi.org/10.1021/acs.jpcc.0c02686.

    Article  CAS  Google Scholar 

  39. Tainaka S, Ujihira T, Kubo M, Kida M, Shimoyama D, Muramatsu S, Abe M, Haino T, Ebata T, Misaizu F, Ohshimo K, Inokuchi Y. Conformation of K+(crown ether) complexes revealed by ion mobility–mass spectrometry and ultraviolet spectroscopy. J Phys Chem A. 2020;124(48):9980. https://doi.org/10.1021/acs.jpca.0c09068.

    Article  CAS  Google Scholar 

  40. Sun Y, Zhu M, Yao Y, Wang H, Tong B, Zhao Z. A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant. Sep Purif Technol. 2020;237:116325. https://doi.org/10.1016/j.seppur.2019.116325.

    Article  CAS  Google Scholar 

  41. Chen W, Tian Y, Hu C, Zhao Z, Xu L, Tong B. Theoretical and extraction studies on the selectivity of lithium with 14C4 derivatives. New J Chem. 2020;44(46):20341. https://doi.org/10.1039/D0NJ04404K.

    Article  CAS  Google Scholar 

  42. Tian YP, Chen WW, Wang CC, Xu L, Meng QM, Tong BH, Zhao Z. Computational study for the electrophilic reactivity prediction of crown ethers. J Mol Liq. 2021;341: 117418. https://doi.org/10.1016/j.molliq.2021.117418.

    Article  CAS  Google Scholar 

  43. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580. https://doi.org/10.1002/jcc.22885.

    Article  CAS  Google Scholar 

  44. Chetry N, Devi TG. Intermolecular interaction study of l-threonine in polar aprotic solvent: experimental and theoretical study. J Mol Liq. 2021;338:116689. https://doi.org/10.1016/j.molliq.2021.116689.

    Article  CAS  Google Scholar 

  45. Da Silva GTST, Michels FS, Silveira RG, Caires ARL, Casagrande GA. Insights into the electronic properties of diphenyl chalcogenides compounds: a combined experimental and theoretical study. J Mol Struct. 2019;1185:21. https://doi.org/10.1016/j.molstruc.2019.02.075.

    Article  CAS  Google Scholar 

  46. Torabi V, Kargar H, Akbari A, Behjatmanesh-Ardakani R, Amiri Rudbari H, Nawaz TM. Nickel(II) complex with an asymmetric tetradentate Schiff base ligand: synthesis, characterization, crystal structure, and DFT studies. J Coord Chem. 2018;71(22):3748. https://doi.org/10.1080/00958972.2018.1521967.

    Article  CAS  Google Scholar 

  47. Burgin SR, Oramous J, Kaminski M, Stocker L, Moradi M. High school biology students use of visual molecular dynamics as an authentic tool for learning about modeling as a professional scientific practice. Biochem Mol Biol Educ. 2018;46(3):230. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K. VDM: visual molecular dynamics. J Mol Graph. 1996. https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  Google Scholar 

  49. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J. The Mayer bond order as a tool in inorganic chemistry. J Chem Soc Dalton trans. 2001;14:2095. https://doi.org/10.1039/B102094N.

    Article  Google Scholar 

  50. Johnson ER, Keinan S, Mori Sánchez P, Contreras García J, Cohen AJ, Yang W. Revealing noncovalent interactions. J Am Chem Soc. 2010;132(18):6498. https://doi.org/10.1021/ja100936w.

    Article  CAS  Google Scholar 

  51. Bandyopadhyay P, Seikh MM. Unraveling the regioselectivity of odd electron halogen bond formation using electrophilicity index and chemical hardness parameters. Phys Chem Chem Phys. 2019;21(48):26580. https://doi.org/10.1039/C9CP05374C.

    Article  CAS  Google Scholar 

  52. Su H, Wu Q, Wang H, Wang H. An assessment of the random-phase approximation functional and characteristics analysis for noncovalent cation-π interactions. Phys Chem Chem Phys. 2017;19(38):26014. https://doi.org/10.1039/c7cp04504b.

    Article  CAS  Google Scholar 

  53. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras García J, Hénon E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys. 2017;19(27):17928. https://doi.org/10.1039/c7cp02110k.

    Article  CAS  Google Scholar 

  54. Lefebvre C, Khartabil H, Boisson JC, Contreras García J, Piquemal JP, Hénon E. The independent gradient model: a new approach for probing strong and weak interactions in molecules from wave function calculations. ChemPhysChem. 2018;19(6):724. https://doi.org/10.1002/cphc.201701325.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51704011, U1703130 and 51904003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 8494 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, YP., Wang, CC., Zhang, F. et al. Mechanism of Li+/Na+ separation by crown ether and butyrate acid root. Rare Met. 42, 1238–1248 (2023). https://doi.org/10.1007/s12598-022-02201-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02201-z

Keywords

Navigation