Skip to main content
Log in

Materials for lithium recovery from salt lake brine

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg2+ and Li+ is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg2+/Li+ separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Gil-Alana LA, Monge M (2019) Lithium: production and estimated consumption. Evidence of persistence. Resour Policy 60:198–202

    Google Scholar 

  2. Martin G, Rentsch L, Höck M, Bertau M (2017) Lithium market research—global supply, future demand and price development. Energy Storage Mater 6:171–179

    Google Scholar 

  3. Liu D, Gao X, An H, Qi Y, Sun X, Wang Z, Chen Z, An F, Jia N (2019) Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China. Resour Conserv Recycl 145:311–321

    Google Scholar 

  4. Maxwell P (2015) Transparent and opaque pricing: the interesting case of lithium. Resour Policy 45:92–97

    Google Scholar 

  5. Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744

    Google Scholar 

  6. Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J (2018) Global lithium sources—industrial use and future in the electric vehicle Industry: a review. Resources 7:57. https://doi.org/10.3390/resources7030057

  7. Sun X, Hao H, Zhao F, Liu Z (2017) Tracing global lithium flow: a trade-linked material flow analysis. Resour Conserv Recycl 124:50–61

    Google Scholar 

  8. U.S. Geological Survey (2020) Mineral Commodity Summaries 2020. U.S. Geological Survey, Reston

    Google Scholar 

  9. U.S. Geological Survey (2010) Mineral Commodity Summaries 2010. U.S. Geological Survey, Reston

    Google Scholar 

  10. U.S. Geological Survey (2019) Mineral Commodity Summaries 2019. U.S. Geological Survey, Reston

    Google Scholar 

  11. Li X, Mo Y, Qing W, Shao S, Tang CY, Li J (2019) Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci 591:117317. https://doi.org/10.1016/j.memsci.2019.117317

  12. Nguyen T, Lee M (2018) A review on the separation of lithium ion from leach liquors of primary and secondary resources by solvent extraction with commercial extractants. Processes 6:55. https://doi.org/10.3390/pr6050055

  13. Loganathan P, Naidu G, Vigneswaran S (2017) Mining valuable minerals from seawater: a critical review. Environ Sci: Water Res Technol 3:37–53

    CAS  Google Scholar 

  14. Linneen N, Bhave R, Woerner D (2019) Purification of industrial grade lithium chloride for the recovery of high purity battery grade lithium carbonate. Sep Purif Technol 214:168–173

    CAS  Google Scholar 

  15. Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403

    CAS  Google Scholar 

  16. Zhao X, Yang H, Wang Y, Sha Z (2019) Review on the electrochemical extraction of lithium from seawater/brine. J Electroanal Chem 850:113389. https://doi.org/10.1016/j.jelechem.2019.113389

  17. Bardi U (2010) Extracting minerals from seawater: an energy analysis. Sustainability 2:980–992

    CAS  Google Scholar 

  18. Zhang Y, Hu Y, Sun N, Khoso SA, Wang L, Sun W (2019) A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine. Hydrometallurgy 187:125–133

    CAS  Google Scholar 

  19. Liu G, Zhao Z, He L (2020) Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 474:114185. https://doi.org/10.1016/j.desal.2019.114185

  20. Song JF, Nghiem LD, Li X-M, He T (2017) Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ Sci: Water Res Technol 3:593–597

    CAS  Google Scholar 

  21. Guo X, Hu S, Wang C, Duan H, Xiang X (2018) Highly efficient separation of magnesium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology. Ind Eng Chem Res 57:6618–6626

    CAS  Google Scholar 

  22. Liu X, Chen X, He L, Zhao Z (2015) Study on extraction of lithium from salt lake brine by membrane electrolysis. Desalination 376:35–40

    CAS  Google Scholar 

  23. Guo Z-Y, Ji Z-Y, Chen Q-B, Liu J, Zhao Y-Y, Li F, Liu Z-Y, Yuan J-S (2018) Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J Clean Prod 193:338–350

    CAS  Google Scholar 

  24. Ji Z-Y, Chen Q-B, Yuan J-S, Liu J, Zhao Y-Y, Feng W-X (2017) Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. Sep Purif Technol 172:168–177

    CAS  Google Scholar 

  25. Li W, Shi C, Zhou A, He X, Sun Y, Zhang J (2017) A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation. Sep Purif Technol 186:233–242

    CAS  Google Scholar 

  26. Li L, Deshmane VG, Paranthaman MP, Bhave R, Moyer BA, Harrison S (2018) Lithium recovery from aqueous resources and batteries: a brief review. Johnson Matthey Technol Rev 62:161–176

    CAS  Google Scholar 

  27. Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266

    Google Scholar 

  28. An JW, Kang DJ, Tran KT, Kim MJ, Lim T, Tran T (2012) Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118:64–70

    Google Scholar 

  29. Somrani A, Hamzaoui AH, Pontie M (2013) Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317:184–192

    CAS  Google Scholar 

  30. Choubey PK, Kim M-S, Srivastava RR, Lee J-C, Lee J-Y (2016) Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: From mineral and brine resources. Miner Eng 89:119–137

    CAS  Google Scholar 

  31. Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208

    CAS  Google Scholar 

  32. Flexer V, Baspineiro CF, Galli CI (2018) Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci Total Environ 639:1188–1204

    CAS  Google Scholar 

  33. Zhang Y, Hu Y, Wang L, Sun W (2019) Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner Eng 139:105868. https://doi.org/10.1016/j.mineng.2019.105868

  34. Xu Z, Zhang H, Wang R, Gui W, Liu G, Yang Y (2014) Systemic and direct production of battery-grade lithium carbonate from a saline Lake. Ind Eng Chem Res 53:16502–16507

    CAS  Google Scholar 

  35. Liu X, Zhong M, Chen X, Zhao Z (2018) Separating lithium and magnesium in brine by aluminum-based materials. Hydrometallurgy 176:73–77

    CAS  Google Scholar 

  36. Liu Y, Deng T (2006) Progresses on the process and technique of lithium recovery from salt Lake brines around the world. World Sci-Technol R&D 28:69–75

    Google Scholar 

  37. Wang H, Zhong Y, Du B, Zhao Y, Wang M (2018) Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 175:102–108

    Google Scholar 

  38. Tran KT, Van Luong T, An J-W, Kang D-J, Kim M-J, Tran T (2013) Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate. Hydrometallurgy 138:93–99

    Google Scholar 

  39. Tran KT, Han KS, Kim SJ, Kim MJ, Tran T (2016) Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate. Hydrometallurgy 160:106–114

    CAS  Google Scholar 

  40. Hamzaoui AH, Hammi H, M’nif A (2007) Operating conditions for lithium recovery from natural brines. Russ J Inorg Chem 52:1859–1863

    Google Scholar 

  41. Kaplan D (2013) Process for the extraction of lithium from Dead Sea solutions. Isr J Chem 1:115–120

    Google Scholar 

  42. Epstein JA, Feist EM, Zmora J, Marcus Y (1981) Extraction of lithium from the dead sea. Hydrometallurgy 6:269–275

    CAS  Google Scholar 

  43. Yanagase K, Yoshinaga T, Kawano K, Matsuoka T (2006) The recovery of lithium from geothermal water in the Hatchobrau are of Kyushu, Japan. Bull Chem Sci Jpn 56:2490–2498

    Google Scholar 

  44. Yoshinaga T, Kawano K, Imoto H (1986) Basic study on lithium recovery from lithium containing solution. ChemInform 17:1207–1213

    Google Scholar 

  45. Park SH, Kim JH, Moon SJ, Jung JT, Wang HH, Ali A, Quist-Jensen CA, Macedonio F, Drioli E, Lee YM (2020) Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J Membr Sci 598:117683. https://doi.org/10.1016/j.memsci.2019.117683

  46. Garrett DE (2004) Handbook of lithium and natural calcium chloride. Elsevier Science, Amsterdam

    Google Scholar 

  47. Ooi K, Sonoda A, Makita Y, Chitrakar R, Tasaki-Handa Y, Nakazato T (2017) Recovery of lithium from salt-brine eluates by direct crystallization as lithium sulfate. Hydrometallurgy 174:123–130

    CAS  Google Scholar 

  48. Quist-Jensen CA, Ali A, Mondal S, Macedonio F, Drioli E (2016) A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J Membr Sci 505:167–173

    CAS  Google Scholar 

  49. Quist-Jensen C, Macedonio F, Drioli E (2016) Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for mining from the sea. Crystals 6:36. https://doi.org/10.3390/cryst6040036

  50. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    CAS  Google Scholar 

  51. Tian L, Ma W, Han M (2010) Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide. Chem Eng J 156:134–140

    CAS  Google Scholar 

  52. Jiang H, Yang Y, Sun S, Yu J (2019) Adsorption of lithium ions on lithium-aluminum hydroxides: equilibrium and kinetics. Can J Chem Eng 98:544–555

    Google Scholar 

  53. Yang F, Chen S, Shi C, Xue F, Zhang X, Ju S, Xing W (2018) A facile synthesis of hexagonal spinel λ-MnO2 ion-sieves for highly selective Li+ adsorption. Processes 6:59

    Google Scholar 

  54. Ryabtsev AD, Menzheres LT, Ten AV (2002) Sorption of lithium from brine onto granular LiCl 2Al(OH)3 mH2O sorbent under dynamic conditions. Russ J Appl Chem 75:1069–1074

    CAS  Google Scholar 

  55. Chen J, Lin S, Yu J (2020) Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines. J Hazard Mater 388:122101. https://doi.org/10.1016/j.jhazmat.2020.122101

  56. Kotsupalo NP, Ryabtsev AD, Poroshina IA, Kurakov AA, Mamylova EV, Menzheres LT, Korchagin MA (2013) Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Russ J Appl Chem 86:482–487

    CAS  Google Scholar 

  57. Lee JM, Bauman WC (1978) Recovery of lithium from brines, United States

  58. Bauman WC, Burba JL (2001) Composition for the recovery of lithium values from brine and process of making/using said composition, United States

  59. Ageev VN, Solovev SM (2001) Investigation of lithium adsorption on the surface of TiO2 by electron-stimulated desorption. Surf Sci 480:1–10

    CAS  Google Scholar 

  60. Krischok S, Schaefer JA, Offt O, Kempter V (2005) Lithium adsorption on TiO2: studies with electron spectroscopies (MIES and UPS). Surf Interface Anal 37:83–89

    CAS  Google Scholar 

  61. Gong LX, Wang RZ, Xia ZZ, Chen CJ (2010) Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel. J Chem Eng Data 55:2920–2923

    CAS  Google Scholar 

  62. Jongsik K, Ulla Gro N, Grey CP (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): a 2H and 7Li solid-state MAS NMR study. J Am Chem Soc 130:1285–1295

    Google Scholar 

  63. Kim J, Grey CP (2010) 2H and 7Li solid-state MAS NMR study of local environments and Lithium adsorption on the Iron(III) oxyhydroxide, akaganeite (β-FeOOH). ChemInform 41:5453–5462

    Google Scholar 

  64. Jeong J-M, Rhee KY, Park S-J (2015) Effect of chemical treatments on lithium recovery process of activated carbons. J Ind Eng Chem 27:329–333

    CAS  Google Scholar 

  65. Liu G, Zhao Z, Ghahreman A (2019) Novel approaches for lithium extraction from salt-lake brines: a review. Hydrometallurgy 187:81–100

    CAS  Google Scholar 

  66. Xu X, Chen Y, Wan P, Gasem K, Wang K, He T, Adidharma H, Fan M (2016) Extraction of lithium with functionalized lithium ion-sieves. Prog Mater Sci 84:276–313

    CAS  Google Scholar 

  67. Marthi R, Smith YR (2019) Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite. Hydrometallurgy 186:115–125

    CAS  Google Scholar 

  68. Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333

    CAS  Google Scholar 

  69. Hunter JC (1981) Preparation of a new crystal form of manganese dioxide λ-MnO2. J Solid State Chem 39:142–147

    CAS  Google Scholar 

  70. Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solv Extr Ion Exchange 18:655–678

    CAS  Google Scholar 

  71. Sato K, Poojary DM, Clearfield A, Kohno M, Inoue Y (1997) The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties. J Solid State Chem 131:84–93

    CAS  Google Scholar 

  72. Chitrakar R, Kanoh H, Miyai Y, Ooi K (2000) A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem Mater 12:3151–3157

    CAS  Google Scholar 

  73. Yang XJ, Kanoh H, Tang WP, Ooi K (2000) Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation. J Mater Chem 10:1903–1909

    CAS  Google Scholar 

  74. Yang XJ, Tang WP, Kanoh H, Ooi K (1999) Synthesis of lithium manganese oxide in different lithium-containing fluxes. J Mater Chem 9:2683–2690

    CAS  Google Scholar 

  75. Wang L, Ma W, Liu R, Li HY, Meng CG (2006) Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor. Solid State Ionics 177:1421–1428

    CAS  Google Scholar 

  76. Chitrakar R, Makita Y, Ooi K, Sonoda A (2012) Selective uptake of Lithium Ion from brine by H1.33Mn1.67O4 and H1.6Mn1.6O4. Chem Lett 41:1647–1649

    CAS  Google Scholar 

  77. Sun SY, Song X, Zhang QH, Wang J, Yu JG (2011) Lithium extraction/insertion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology. Adsorp-J Int Adsorp Soc 17:881–887

    CAS  Google Scholar 

  78. Zhang Q-H, Li S-P, Sun S-Y, Yin X-S, Yu J-G (2010) LiMn2O4 spinel direct synthesis and lithium ion selective adsorption. Chem Eng Sci 65:169–173

    CAS  Google Scholar 

  79. Xiao J, Nie X, Sun S, Song X, Li P, Yu J (2015) Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Adv Powder Technol 26:589–594

    CAS  Google Scholar 

  80. Xiao J-L, Sun S-Y, Wang J, Li P, Yu J-G (2013) Synthesis and adsorption properties of Li1.6Mn1.6O4 spinel. Ind Eng Chem Res 52:11967–11973

    CAS  Google Scholar 

  81. Ehteshamzadeh M, Zandevakili S, Ranjbar M (2015) Improvement of lithium adsorption capacity by optimising the parameters affecting synthesised ion sieves. Micro & Nano Lett 10:58–63

    Google Scholar 

  82. Ranjbar M, Ehteshamzadeh M, Zandevakili S (2014) Synthesis of a nanostructure ion sieve with improved lithium adsorption capacity. Micro & Nano Lett 9:455–459

    Google Scholar 

  83. Liu H, Tian R, Jiang Y, Tan X, Chen J, Zhang L, Guo Y, Wang H, Sun L, Chu W (2015) On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route. Electrochim Acta 180:138–146

    CAS  Google Scholar 

  84. Chen M, Wu R, Ju S, Zhang X, Xue F, Xing W (2018) Improved performance of Al-doped LiMn2O4 ion-sieves for Li+ adsorption. Microporous Mesoporous Mater 261:29–34

    CAS  Google Scholar 

  85. Chitrakar R, Makita Y, Ooi K, Sonoda A (2014) Synthesis of iron-doped manganese oxides with an ion-sieve property: lithium adsorption from Bolivian brine. Ind Eng Chem Res 53:3682–3688

    CAS  Google Scholar 

  86. Wang C, Zhai Y, Wang X, Zeng M (2014) Preparation and characterization of lithium λ-MnO2 ion-sieves. Front Chem Sci Eng 8:471–477

    CAS  Google Scholar 

  87. Zhang QH, Sun S, Li S, Hao J, Yu JG (2007) Adsorption of lithium ions on novel nanocrystal MnO2. Chem Eng Sci 62:4869–4874

    CAS  Google Scholar 

  88. Liu L, Zhang H, Zhang Y, Cao D, Zhao X (2015) Lithium extraction from seawater by manganese oxide ion sieve MnO2 0.5H2O. Colloids Surf A 468:280–284

    CAS  Google Scholar 

  89. Chitrakar R, Kanoh H, Miyai Y, Ooi K (2001) Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4. Ind Eng Chem Res 40:2054–2058

    CAS  Google Scholar 

  90. Chitrakar R, Kanoh H, Miyai Y, Ooi K (2002) Synthesis of o-LiMnO2 by microwave Irradiation and studyIts heat treatment and lithium exchange. J Solid State Chem 163:1–4

    CAS  Google Scholar 

  91. Yu Q, Morioka E, Sasaki K (2013) Characterization of lithium ion sieve derived from biogenic Mn oxide. Microporous Mesoporous Mater 179:122–127

    CAS  Google Scholar 

  92. Sun S-Y, Xiao J-L, Wang J, Song X, Yu J-G (2014) Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction. Ind Eng Chem Res 53:15517–15521

    CAS  Google Scholar 

  93. Zhang Q-H, Li S-P, Sun S-Y, Yin X-S, Yu J-G (2009) Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve. Adv Powder Technol 20:432–437

    Google Scholar 

  94. Shi X, Zhou D, Zhang Z, Yu L, Xu H, Chen B, Yang X (2011) Synthesis and properties of Li1.6Mn1.6O4 and its adsorption application. Hydrometallurgy 110:99–106

    CAS  Google Scholar 

  95. Xiao J-L, Sun S-Y, Song X, Li P, Yu J-G (2015) Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve. Chem Eng J 279:659–666

    CAS  Google Scholar 

  96. Wang L, Meng CG, Ma W (2009) Study on Li+ uptake by lithium ion-sieve via the pH technique. Colloids Surf A 334:34–39

    CAS  Google Scholar 

  97. Kitajou A, Suzuki T, Nishihama S, Yoshizuka K (2003) Selective recovery of lithium from seawater using a novel MnO2 type adsorbent. Ars Separatoria Acta 2:97–106

  98. Kataoka K, Takahashi Y, Kijima N, Nagai H, Akimoto J, Idemoto Y, Ohshima K-I (2009) Crystal growth and structure refinement of monoclinic Li2TiO3. Mater Res Bull 44:168–172

    CAS  Google Scholar 

  99. Chitrakar R, Makita Y, Ooi K, Sonoda A (2014) Lithium recovery from salt lake brine by H2TiO3. Dalton Trans 43:8933–8939

    CAS  Google Scholar 

  100. Wang S, Li P, Cui W, Zhang H, Wang H, Zheng S, Zhang Y (2016) Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption. RSC Adv 6:102608–102616

    CAS  Google Scholar 

  101. Deptuła A, Olczak T, Łada W, Sartowska B, Chmielewski AG, Alvani C, Carconi PL, Bartolomeo AD, Pierdominici F, Casadio S (2003) Inorganic sol-gel preparation of medium sized microparticles of Li2TiO3 from TiCl4 as tritium breeding material for fusion reactors. J Sol-Gel Sci Technol 26:207–212

    Google Scholar 

  102. Zhang L, Zhou D, Yao Q, Zhou J (2016) Preparation of H2TiO3 -lithium adsorbent by the sol–gel process and its adsorption performance. Appl Surf Sci 368:82–87

    CAS  Google Scholar 

  103. Zhang Q-H, Li S-P, Sun S-Y, Yin X-S, Yu J-G (2010) Lithium selective adsorption on low-dimensional titania nanoribbons. Chem Eng Sci 65:165–168

    CAS  Google Scholar 

  104. Gu D, Sun W, Han G, Cui Q, Wang H (2018) Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine. Chem Eng J 350:474–483

    CAS  Google Scholar 

  105. He G, Zhang L, Zhou D, Zou Y, Wang F (2015) The optimal condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design. Ionics 21:2219–2226

    CAS  Google Scholar 

  106. Moazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bull 61:70–75

    CAS  Google Scholar 

  107. Leonidov IA, Leonidova ON, Perelyaeva LA, Samigullina RF, Kovyazina SA, Patrakeev MV (2003) Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12. Phys Solid State 45:2183–2188

    CAS  Google Scholar 

  108. Fen LB, Han TK, Nee NM, Ang BC, Johan MR (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435

    CAS  Google Scholar 

  109. Dong DQ, Wang WX, Wang ML (2014) Preparation of 3DON Li4Ti5O12 and behavior of Li+ ion exchange. Appl Mech Mater 618:175–179

    CAS  Google Scholar 

  110. Zandvakili S, Ranjbar M (2017) Preparation and characterisation of lithium ion exchange composite for the recovery of lithium from brine. Min Process Extract Metall 127:176–181

    Google Scholar 

  111. Sun S-Y, Cai L-J, Nie X-Y, Song X, Yu J-G (2015) Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. J Water Process Eng 7:210–217

    Google Scholar 

  112. Limjuco LA, Nisola GM, Lawagon CP, Lee S-P, Seo JG, Kim H, Chung W-J (2016) H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources. Colloids Surf, A 504:267–279

    CAS  Google Scholar 

  113. Ma L-W, Chen B-Z, Chen Y, Shi X-C (2011) Preparation, characterization and adsorptive properties of foam-type lithium adsorbent. Microporous Mesoporous Mater 142:147–153

    CAS  Google Scholar 

  114. Han Y, Kim H, Park J (2012) Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chem Eng J 210:482–489

    CAS  Google Scholar 

  115. Nisola GM, Limjuco LA, Vivas EL, Lawagon CP, Park MJ, Shon HK, Mittal N, Nah IW, Kim H, Chung W-J (2015) Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation. Chem Eng J 280:536–548

    CAS  Google Scholar 

  116. Kim J, Oh S, Kwak S-Y (2015) Magnetically separable magnetite–lithium manganese oxide nanocomposites as reusable lithium adsorbents in aqueous lithium resources. Chem Eng J 281:541–548

    CAS  Google Scholar 

  117. Xue F, Wang B, Chen M, Yi C, Ju S, Xing W (2019) Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. Sep Purif Technol 228:115750. https://doi.org/10.1016/j.seppur.2019.115750

  118. Wang S, Zheng S, Wang Z, Cui W, Zhang H, Yang L, Zhang Y, Li P (2018) Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves. Chem Eng J 332:160–168. https://doi.org/10.1016/j.cej.2017.09.055

  119. Chung W-J, Torrejos REC, Park MJ, Vivas EL, Limjuco LA, Lawagon CP, Parohinog KJ, Lee S-P, Shon HK, Kim H, Nisola GM (2017) Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves. Chem Eng J 309:49–62

    CAS  Google Scholar 

  120. Park MJ, Nisola GM, Beltran AB, Torrejos REC, Seo JG, Lee S-P, Kim H, Chung W-J (2014) Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate. Chem Eng J 254:73–81

    CAS  Google Scholar 

  121. Panthi G, Park M, Kim H-Y, Park S-J (2015) Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J Ind Eng Chem 24:1–13

    CAS  Google Scholar 

  122. Wei S, Wei Y, Chen T, Liu C, Tang Y (2020) Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water. Chem Eng J 379:122407. https://doi.org/10.1016/j.cej.2019.122407

  123. Lawagon CP, Nisola GM, Cuevas RAI, Kim H, Lee S-P, Chung W-J (2019) Development of high capacity Li+ adsorbents from H2TiO3/polymer nanofiber composites: systematic polymer screening, characterization and evaluation. J Ind Eng Chem 70:124–135

    CAS  Google Scholar 

  124. Chung K, Lee J, Kim W, Kim S, Cho K (2008) Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. J Membr Sci 325:503–508

    CAS  Google Scholar 

  125. Park MJ, Nisola GM, Vivas EL, Limjuco LA, Lawagon CP, Seo JG, Kim H, Shon HK, Chung W-J (2016) Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater. J Membr Sci 510:141–154

    CAS  Google Scholar 

  126. Sun D, Meng M, Yin Y, Zhu Y, Li H, Yan Y (2016) Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+. J Porous Mater 23:1411–1419

    CAS  Google Scholar 

  127. Zhu G, Wang P, Qi P, Gao C (2014) Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane. Chem Eng J 235:340–348

    CAS  Google Scholar 

  128. Hong H-J, Park I-S, Ryu T, Ryu J, Kim B-G, Chung K-S (2013) Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chem Eng J 234:16–22

    CAS  Google Scholar 

  129. Hong H-J, Ryu T, Park I-S, Kim M, Shin J, Kim B-G, Chung K-S (2018) Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem Eng J 337:455–461

    CAS  Google Scholar 

  130. Cabbiness DK, Margerum DW (1969) Macrocyclic effect on the stability of copper(II) tetramine complexes. J Am Chem Soc 91:6540–6541

    CAS  Google Scholar 

  131. Frensdorff HK (1971) Stability constants of cyclic polyether complexes with univalent cations. J Am Chem Soc 93:600–606

    CAS  Google Scholar 

  132. Limjuco LA, Nisola GM, Torrejos REC, Han JW, Song HS, Parohinog KJ, Koo S, Lee SP, Chung WJ (2017) Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents. ACS Appl Mater Interfaces 9:42862–42874

    CAS  Google Scholar 

  133. Luo X, Zhong W, Luo J, Yang L, Long J, Guo B, Luo S (2017) Lithium ion-imprinted polymers with hydrophilic PHEMA polymer brushes: the role of grafting density in anti-interference and anti-blockage in wastewater. J Colloid Interface Sci 492:146–156

    CAS  Google Scholar 

  134. Cui J, Zhang Y, Wang Y, Ding J, Yu P, Yan Y, Li C, Zhou Z (2018) Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium. New J Chem 42:118–128

    CAS  Google Scholar 

  135. Lu J, Qin Y, Zhang Q, Wu Y, Cui J, Li C, Wang L, Yan Y (2018) Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl Surf Sci 427:931–941

    CAS  Google Scholar 

  136. Sun D, Zhu Y, Meng M, Qiao Y, Yan Y, Li C (2017) Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion. Sep Purif Technol 175:19–26

    CAS  Google Scholar 

  137. Sun D, Meng M, Lu Y, Hu B, Yan Y, Li C (2018) Porous nanocomposite membranes based on functional GO with selective function for lithium adsorption. New J Chem 42:4432–4442

    CAS  Google Scholar 

  138. Sun D, Meng M, Qiao Y, Zhao Y, Yan Y, Li C (2018) Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium. Sep Purif Technol 194:64–72

    CAS  Google Scholar 

  139. Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91:2549–2562

    CAS  Google Scholar 

  140. Torrejos REC, Nisola GM, Park MJ, Beltran AB, Seo JG, Lee S-P, Chung W-J (2014) Liquid–liquid extraction of Li+ using mixed ion carrier system at room temperature ionic liquid. Desalin Water Treat 53:2774–2781

    Google Scholar 

  141. Izatt RM, Pawlak K, Bradshaw JS (1991) Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem Rev 91:1721–2085

  142. Torrejos REC, Nisola GM, Song HS, Limjuco LA, Lawagon CP, Parohinog KJ, Koo S, Han JW, Chung W-J (2017) Design of lithium selective crown ethers: synthesis, extraction and theoretical binding studies. Chem Eng J 326:921–933

    CAS  Google Scholar 

  143. McDowell WJ, Case GN, Aldrup DW (2006) Investigations of ion-size—selective synergism in solvent extraction. Sep Sci Technol 18:1483–1507

    Google Scholar 

  144. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CAS  Google Scholar 

  145. Hayashita T, Lee JH, Hankins MG, Lee JC, Kim JS, Knobeloch JM, Bartsch RA (1992) Selective sorption and column concentration of alkali-metal cations by carboxylic acid resins with dibenzo-14-crown-4 subunits and their acyclic polyether analogues. Anal Chem 64:815–819

    CAS  Google Scholar 

  146. Bartsch RA, Czech BP, Kang SI, Stewart LE, Walkowiak W, Charewicz WA, Heo GS, Son B (1985) High lithium selectivity in competitive alkali metal solvent extraction by lipophilic crown carboxylic acids. J Am Chem Soc 107:4997–4998

    CAS  Google Scholar 

  147. Bartsch RA, Goo MJ, Christian GD, Wen XW, Czech BP, Chapoteau E, Kumar A (1993) Influence of ring substituents and matrix on lithium/sodium selectivity of 14-crown-4 and benzo-13-crown-4-compounds. Anal Chim Acta 272:285–292

  148. Czech BP, Babb DA, Son B, Bartsch RA (1984) Functionalized 13-crown-4,14-crown-4, 15-crown-4, and 16-crown-4 compounds: synthesis and lithium ion complexation. J Organ Chem 49:4805–4810

    CAS  Google Scholar 

  149. Torrejos REC, Nisola GM, Park MJ, Shon HK, Seo JG, Koo S, Chung W-J (2015) Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li+ adsorbents. Chem Eng J 264:89–98

    CAS  Google Scholar 

  150. Habata Y, Ikeda M, Akabori S (1992) Lithium ion selective dibenzo-14-crown-4 possessing a phosphoric acid functional group as a pendant. Tetrahedron Lett 33:3157–3160

    CAS  Google Scholar 

  151. Tsukube H, KenjiHorib T Inouec (1993) Amine-armed aza-12-crown-4 as a new Li+ ion-specific ionophore. Tetrahedron Lett 34:6749–6752

    CAS  Google Scholar 

  152. Tv H (1968) Synergism in the solvent extraction of alkali metal ions by thenoyl trifluoracetone. J Inorgan Nucl Chem 30:1025–1036

    Google Scholar 

  153. Tv H (1969) Synergism in the solvent extraction of metal ions by dibenzoylmethane. Inorg Nucl Chem 31:499–511

    Google Scholar 

  154. Zhang L, Li L, Shi D, Peng X, Song F, Nie F, Han W (2018) Recovery of lithium from alkaline brine by solvent extraction with β-diketone. Hydrometallurgy 175:35–42

    CAS  Google Scholar 

  155. Da L, Wl T, Wj M, Drury JS (1968) Solvent extraction of lithium. J Inorg Nucl Chem 30:2807–2821

    Google Scholar 

  156. Ishimori K, Imura H, Ohashi K (2002) Effect of 1,10-phenanthroline on the extraction and separation of lithium(I), sodium(I) and potassium(I) with thenoyltrifluoroacetone. Anal Chim Acta 454:241–247

    CAS  Google Scholar 

  157. Ishimori KI, Imura H (2002) The synergistic selective extraction of lithium(I) with 2-thenoyltrifluoroacetone and 1,10-phenanthroline derivatives. Solvent Extract Res Dev Japan 9:13–25

    CAS  Google Scholar 

  158. Mukai H, Miyazaki S, Umetani S, Kihara S, Matsui M (1989) Synergic liquid/liquid extraction of lithium and sodium with 4-acyl-5-pyrazolones with bulky substituents and tri-n-octylphosphine oxide. Anal Chim Acta 220:111–117

    CAS  Google Scholar 

  159. Bukowsky H, Uhlemann E, Gloe K, Mühl P (1992) Liquid–liquid extraction of alkaline earth and alkali metal ions with acylpyrazolones. Anal Chim Acta 257:105–108

    CAS  Google Scholar 

  160. Umetani S, Sasayama K, Matsui M (1982) Solvent extraction of alkaline earth metals, and lithium with 1-phenyl-3-methyl-4-acylpyrazol-5-ones and trioctylphosphine oxide. Anal Chim Acta 134:327–331

    CAS  Google Scholar 

  161. Umetani S, Maeda K, Kihara S, Matsui M (1987) Solvent extraction of lithium and sodium with 4-benzoyl or 4-perfluoroacyl-5-pyrazolone and TOPO. Talanta 34:779–782

    CAS  Google Scholar 

  162. Kinugasa T, Nishibara H, Murao Y, Kawamura Y, Watanabe K, Takeuchi H (1994) Equilibrium and kinetics of lithium extraction by a mixture of LIX54 and TOPO. J Chem Eng Japan 27:815–818

    CAS  Google Scholar 

  163. Kunugida E (1989) Extraction and separation of lithium and sodium by solvent extraction with BETA-diketone and neutral ligand. Kagaku Kogaku Ronbunshu 15:504–510 (Japanese)

    Google Scholar 

  164. Pranolo Y, Zhu Z, Cheng CY (2015) Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923. Hydrometallurgy 154:33–39

    CAS  Google Scholar 

  165. Seeley FG, Baldwin WH (1976) Extraction of lithium from neutral salt solutions with fluorinated β-diketones. J Inorg Nucl Chem 38:1049–1052

    CAS  Google Scholar 

  166. Kim YS, In G, Choi JM (2003) Chemical equilibrium and synergism for solvent extraction of trace lithium with thenoyltrifluoroacetone in the presence of trioctylphosphine oxide. Bull Korean Chem Soc 24:1495–1500

    CAS  Google Scholar 

  167. Zhang L, Shi D, Li L, Peng X, Song F, Rui H (2019) Solvent extraction of lithium from ammoniacal solution using thenoyltrifluoroacetone and neutral ligands. J Mol Liq 274:746–751

    CAS  Google Scholar 

  168. Harvianto GR, Kim S-H, Ju C-S (2015) Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater. Rare Met 35:948–953

    Google Scholar 

  169. Hano T, Matsumoto M, Ohtake T, Egashir N, Hori F (1992) Recovery of lithium from geothermal water by solvent extraction technique. Solv Extr Ion Exchange 10:195–206

    CAS  Google Scholar 

  170. Song Y, He L, Zhao Z, Liu X (2019) Separation and recovery of lithium from Li3PO4 leaching liquor using solvent extraction with saponified D2EHPA. Sep Purif Technol 229:115823. https://doi.org/10.1016/j.seppur.2019.115823

  171. Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159:1510–1518

    CAS  Google Scholar 

  172. Swain B, Jeong J, Lee J-C, Lee G-H (2008) Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: a mathematical model correlation to predict optimum operational conditions. Sep Purif Technol 63:360–369

    CAS  Google Scholar 

  173. Zhao JM, Shen XY, Deng FL, Wang FC, Wu Y, Liu HZ (2011) Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep Purif Technol 78:345–351

    CAS  Google Scholar 

  174. Swain B, Jeong J, Lee J, Lee G-H (2006) Separation of cobalt and lithium from mixed sulphate solution using Na-Cyanex 272. Hydrometallurgy 84:130–138

    CAS  Google Scholar 

  175. Kang J, Senanayake G, Sohn J, Shin SM (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100:168–171

    CAS  Google Scholar 

  176. Zhou Z, Qin W, Liang S, Tan Y, Fei W (2012) Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3. Ind Eng Chem Res 51:12926–12932

    CAS  Google Scholar 

  177. Zhou Z, Qin W, Fei W, Li Y (2012) A study on stoichiometry of complexes of tributyl phosphate and methyl isobutyl ketone with lithium in the presence of FeCl3. Chin J Chem Eng 20:36–39

    CAS  Google Scholar 

  178. Shi D, Cui B, Li L, Peng X, Zhang L, Zhang Y (2019) Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP–kerosene–FeCl3 system. Sep Purif Technol 211:303–309

    CAS  Google Scholar 

  179. Zhou Z, Qin W, Fei W (2011) Extraction equilibria of lithium with tributyl phosphate in three diluents. J Chem Eng Data 56:3518–3522

    CAS  Google Scholar 

  180. Zhou Z, Qin W, Liu Y, Fei W (2011) Extraction equilibria of lithium with tributyl phosphate in kerosene and FeCl3. J Chem Eng Data 57:82–86

    Google Scholar 

  181. Zhou Z, Liang S, Qin W, Fei W (2013) Extraction equilibria of lithium with tributyl phosphate, diisobutyl ketone, acetophenone, methyl isobutyl ketone, and 2-heptanone in kerosene and FeCl3. Ind Eng Chem Res 52:7912–7917

    CAS  Google Scholar 

  182. Yu X, Fan X, Guo Y, Deng T (2019) Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Sep Purif Technol 211:790–798

    CAS  Google Scholar 

  183. Shi D, Zhang L, Peng X, Li L, Song F, Nie F, Ji L, Zhang Y (2018) Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors. Desalination 441:44–51

    CAS  Google Scholar 

  184. Li H, Li L, Peng X, Ji L, Li W (2019) Selective recovery of lithium from simulated brine using different organic synergist. Chin J Chem Eng 27:335–340

    CAS  Google Scholar 

  185. Ji L, Hu Y, Li L, Shi D, Li J, Nie F, Song F, Zeng Z, Sun W, Liu Z (2016) Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3. Hydrometallurgy 162:71–78

    CAS  Google Scholar 

  186. Shi C, Jing Y, Jia Y (2016) Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J Mol Liq 215:640–646

    CAS  Google Scholar 

  187. Wang X, Jing Y, Liu H, Yao Y, Shi C, Xiao J, Wang S, Jia Y (2018) Extraction of lithium from salt lake brines by bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids. Chem Phys Lett 707:8–12

    CAS  Google Scholar 

  188. Shi C, Duan D, Jia Y, Jing Y (2014) A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J Mol Liq 200:191–195

    CAS  Google Scholar 

  189. Gao D, Yu X, Guo Y, Wang S, Liu M, Deng T, Chen Y, Belzile N (2015) Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene. Chem Res Chin Univ 31:621–626

    CAS  Google Scholar 

  190. Gao D, Guo Y, Yu X, Wang S, Deng T (2016) Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based Ionic liquids with varying alkyl chain lengths. J Chem Eng Jpn 49:104–110

    CAS  Google Scholar 

  191. Shi C, Jia Y, Zhang C, Liu H, Jing Y (2015) Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate. Fusion Eng Des 90:1–6

    CAS  Google Scholar 

  192. Shi C, Jing Y, Jia Y (2017) Tri-n-butyl phosphate–ionic liquid mixtures for Li+ extraction from Mg2+-containing brines at 303–343 K. Russ J Phys Chem A 91:692–696

    CAS  Google Scholar 

  193. Shi C, Jing Y, Xiao J, Wang X, Yao Y, Jia Y (2017) Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep Purif Technol 172:473–479

    CAS  Google Scholar 

  194. Shi C, Jing Y, Xiao J, Wang X, Jia Y (2017) Liquid-liquid extraction of lithium using novel phosphonium ionic liquid as an extractant. Hydrometallurgy 169:314–320

    CAS  Google Scholar 

  195. Shi C, Jia Y, Xiao J, Wang X, Yao Y, Jing Y (2016) Lithium isotope separation by liquid–liquid extraction using ionic liquid system containing dibenzo-14-crown-4. J Mol Liq 224:662–667

    CAS  Google Scholar 

  196. Chen S, Gao D, Yu X, Guo Y, Deng T (2018) Thermokinetics of lithium extraction with the novel extraction systems (tri-isobutyl phosphate + ionic liquid + kerosene). J Chem Thermodyn 123:79–85

    CAS  Google Scholar 

  197. Zhu W, Jia Y, Zhang Q, Sun J, Jing Y, Li J (2019) The effect of ionic liquids as co-extractant with crown ether for the extraction of lithium in dichloromethane-water system. J Mol Liq 285:75–83

    CAS  Google Scholar 

  198. Song J, Li X-M, Zhang Y, Yin Y, Zhao B, Li C, Kong D, He T (2014) Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid–liquid membrane extraction of lithium ions. J Membr Sci 471:372–380

    CAS  Google Scholar 

  199. Xing L, Song J, Li Z, Liu J, Huang T, Dou P, Chen Y, Li X-M, He T (2016) Solvent stable nanoporous poly (ethylene-co-vinyl alcohol) barrier membranes for liquid-liquid extraction of lithium from a salt lake brine. J Membr Sci 520:596–606

    CAS  Google Scholar 

  200. Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L (2014) Recent advances in polymeric solvent-resistant nanofiltration membranes. Adv Polymer Technol. https://doi.org/10.1002/adv.21455

  201. Xu P, Wang W, Qian X, Wang H, Guo C, Li N, Xu Z, Teng K, Wang Z (2019) Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio. Desalination 449:57–68

    CAS  Google Scholar 

  202. Gang Y, Hong S, Liu W, Weihong X, Nanping X (2011) Investigation of Mg2+/Li+ separation by nanofiltration. Chin J Chem Eng 19:586–591

    Google Scholar 

  203. Bi Q, Zhang Z, Zhao C, Tao Z (2014) Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration. Water Sci Technol 70:1690–1694

    CAS  Google Scholar 

  204. Pontié M, Lhassani A, Diawara CK, Elana A, Innocent C, Aureau D, Rumeau M, Croue JP, Buisson H, Hemery P (2004) Seawater nanofiltration for the elaboration of usable salty waters. Desalination 167:347–355

    Google Scholar 

  205. Wen X, Ma P, Zhu C, He Q, Deng X (2006) Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration. Sep Purif Technol 49:230–236

    CAS  Google Scholar 

  206. Li X, Zhang C, Zhang S, Li J, He B, Cui Z (2015) Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation. Desalination 369:26–36

    CAS  Google Scholar 

  207. Shen Q, Xu SJ, Xu ZL, Zhang HZ, Dong ZQ (2019) Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution. J Appl Polym Sci 136:48029

    Google Scholar 

  208. Guo C, Li N, Qian X, Shi J, Jing M, Teng K, Xu Z (2019) Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “drag” effect from carboxyl-containing negative interlayer. Sep Purif Technol 230:115567. https://doi.org/10.1016/j.seppur.2019.05.009

  209. Zhang H-Z, Xu Z-L, Ding H, Tang Y-J (2017) Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+. Desalination 420:158–166

    CAS  Google Scholar 

  210. Song Y, Zhao Z (2018) Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Sep Purif Technol 206:335–342

    CAS  Google Scholar 

  211. Ye ZL, Ghyselbrecht K, Monballiu A, Rottiers T, Sansen B, Pinoy L, Meesschaert B (2018) Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes. Chemosphere 210:867–876

    CAS  Google Scholar 

  212. Parsa N, Moheb A, Mehrabani-Zeinabad A, Masigol MA (2015) Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chem Eng Res Des 98:81–88

    CAS  Google Scholar 

  213. Gmar S, Chagnes A (2019) Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 189:105124. https://doi.org/10.1016/j.hydromet.2019.105124

  214. Kim Y, Walker WS, Lawler DF (2012) Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties. Water Res 46:2042–2056

    CAS  Google Scholar 

  215. Zhang Y, Paepen S, Pinoy L, Meesschaert B, Van der Bruggen B (2012) Selectrodialysis: fractionation of divalent ions from monovalent ions in a novel electrodialysis stack. Sep Purif Technol 88:191–201

    CAS  Google Scholar 

  216. Nie X-Y, Sun S-Y, Sun Z, Song X, Yu J-G (2017) Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403:128–135

    CAS  Google Scholar 

  217. Diaz Nieto CH, Palacios NA, Verbeeck K, Prevoteau A, Rabaey K, Flexer V (2019) Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res 154:117–124

    CAS  Google Scholar 

  218. Nie X-Y, Sun S-Y, Song X, Yu J-G (2017) Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. J Membr Sci 530:185–191

    CAS  Google Scholar 

  219. Chen Q-B, Ji Z-Y, Liu J, Zhao Y-Y, Wang S-Z, Yuan J-S (2018) Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium. J Membr Sci 548:408–420

    CAS  Google Scholar 

  220. Ji P-Y, Ji Z-Y, Chen Q-B, Liu J, Zhao Y-Y, Wang S-Z, Li F, Yuan J-S (2018) Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep Purif Technol 207:1–11

    CAS  Google Scholar 

  221. Stefánsson A, Lemke KH, Bénézeth P, Schott J (2017) Magnesium bicarbonate and carbonate interactions in aqueous solutions: an infrared spectroscopic and quantum chemical study. Geochim Cosmochim Acta 198:271–284

    Google Scholar 

  222. Stefánsson A, Bénézeth P, Schott J (2014) Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150 C and aqueous inorganic carbon speciation and magnesite solubility. Geochim Cosmochim Acta 138:21–31

    Google Scholar 

  223. Zhao L-M, Chen Q-B, Ji Z-Y, Liu J, Zhao Y-Y, Guo X-F, Yuan J-S (2018) Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature. Chem Eng Res Des 140:116–127

    CAS  Google Scholar 

  224. Jiang C, Wang Y, Wang Q, Feng H, Xu T (2014) Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). Ind Eng Chem Res 53:6103–6112

    CAS  Google Scholar 

  225. Lv Y, Yan H, Yang B, Wu C, Zhang X, Wang X (2018) Bipolar membrane electrodialysis for the recycling of ammonium chloride wastewater: membrane selection and process optimization. Chem Eng Res Des 138:105–115

    CAS  Google Scholar 

  226. Hwang CW, Jeong MH, Kim YJ, Son WK, Kang KS, Lee CS, Hwang TS (2016) Process design for lithium recovery using bipolar membrane electrodialysis system. Sep Purif Technol 166:34–40

    CAS  Google Scholar 

  227. İpekçi D, Altıok E, Bunani S, Yoshizuka K, Nishihama S, Arda M, Kabay N (2018) Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED). Desalination 448:69–75

    Google Scholar 

  228. Noguchi M, Nakamura Y, Shoji T, Iizuka A, Yamasaki A (2018) Simultaneous removal and recovery of boron from waste water by multi-step bipolar membrane electrodialysis. J Water Process Eng 23:299–305

    Google Scholar 

  229. Bunani S, Arda M, Kabay N, Yoshizuka K, Nishihama S (2017) Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination 416:10–15

    CAS  Google Scholar 

  230. Hoshino T (2013) Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane. Fusion Eng Des 88:2956–2959

    CAS  Google Scholar 

  231. Hoshino T (2013) Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination 317:11–16

    CAS  Google Scholar 

  232. Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63

    CAS  Google Scholar 

  233. Hoshino T (2014) Lithium recovery from seawater by electrodialysis using ionic liquid-based membrane technology. ECS Trans 58:173–177

    Google Scholar 

  234. Shi W, Liu X, Ye C, Cao X, Gao C, Shen J (2019) Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Sep Purif Technol 210:885–890

    CAS  Google Scholar 

  235. Kanoh H, Ooi K, Miyai Y, Katoh S (1993) Electrochemical recovery of lithium Ions in the aqueous phase. Sep Sci Technol 28:643–651

    CAS  Google Scholar 

  236. Kim JS, Lee YH, Choi S, Shin J, Dinh HC, Choi JW (2015) An electrochemical cell for selective lithium capture from seawater. Environ Sci Technol 49:9415–9422

    CAS  Google Scholar 

  237. Dinh H-C, Mho S-I, Yeo I-H (2011) Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology. Electroanalysis 23:2079–2086

    CAS  Google Scholar 

  238. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    CAS  Google Scholar 

  239. He L, Xu W, Song Y, Luo Y, Liu X, Zhao Z (2018) New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob Chall 2:1700079. https://doi.org/10.1002/gch2.201700079

  240. Liu X, Chen X, Zhao Z, Liang X (2014) Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes. Hydrometallurgy 146:24–28

    CAS  Google Scholar 

  241. Zhao Z, Si X, Liu X, He L, Liang X (2013) Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy 133:75–83

    CAS  Google Scholar 

  242. Pasta M, Battistel A, La Mantia F (2012) Batteries for lithium recovery from brines. Energy Environ Sci 5:9487

    CAS  Google Scholar 

  243. Trocoli R, Battistel A, Mantia FL (2014) Selectivity of a lithium-recovery process based on LiFePO4. Chemistry 20:9888–9891

    CAS  Google Scholar 

  244. Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985–3990

  245. Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115–1118

    CAS  Google Scholar 

  246. Kim S, Kim J, Kim S, Lee J, Yoon J (2018) Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environ Sci: Water Res Technol 4:175–182

    CAS  Google Scholar 

  247. Dinh H-C, Mho S-I, Kang Y, Yeo I-H (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189–195

    CAS  Google Scholar 

  248. Calvo EJ (2019) Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr Opin Electrochem 15:102–108

    CAS  Google Scholar 

  249. Lee J, Yu SH, Kim C, Sung YE, Yoon J (2013) Highly selective lithium recovery from brine using a lambda-MnO2–Ag battery. Phys Chem Chem Phys 15:7690–7695

    CAS  Google Scholar 

  250. Kim S, Lee J, Kim S, Kim S, Yoon J (2018) Electrochemical lithium recovery with a LiMn2O4–zinc batteryvsystem using zinc as a negative electrode. Energy Technology 6:340–344

    CAS  Google Scholar 

  251. Kim S, Lee J, Kang JS, Jo K, Kim S, Sung YE, Yoon J (2015) Lithium recovery from brine using a lambda-MnO2/activated carbon hybrid supercapacitor system. Chemosphere 125:50–56

    CAS  Google Scholar 

  252. Xu X, Zhou Y, Feng Z, Kahn NU, Haq Khan ZU, Tang Y, Sun Y, Wan P, Chen Y, Fan M (2018) A self-supported λ-MnO2 film electrode used for electrochemical lithium recovery from brines. ChemPlusChem 83:521–528

    CAS  Google Scholar 

  253. Zhao M-Y, Ji Z-Y, Zhang Y-G, Guo Z-Y, Zhao Y-Y, Liu J, Yuan J-S (2017) Study on lithium extraction from brines based on LiMn2O4/Li1−xMn2O4 by electrochemical method. Electrochim Acta 252:350–361

    CAS  Google Scholar 

  254. Liu D-F, Sun S-Y, Yu J-G (2019) A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials. Chem Eng J 377:119825. https://doi.org/10.1016/j.cej.2018.08.211

  255. Missoni LL, Marchini F, del Pozo M, Calvo EJ (2016) A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine. J Electrochem Soc 163:A1898–A1902

    CAS  Google Scholar 

  256. Marchini F, Rubi D, del Pozo M, Williams FJ, Calvo EJ (2016) Surface chemistry and lithium-Ion exchange in LiMn2O4 for the electrochemical selective extraction of LiCl from natural salt Lake brines. J Phys Chem C 120:15875–15883

    CAS  Google Scholar 

  257. Du X, Guan G, Li X, Jagadale AD, Ma X, Wang Z, Hao X, Abudula A (2016) A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. J Mater Chem A 4:13989–13996

    CAS  Google Scholar 

  258. Zhou L, Yin Z, Tian H, Ding Z, Li X, Wang Z, Guo H (2018) Spinel-embedded and Li3PO4 modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for high-performance Li-ion battries. Appl Surf Sci 456:763–770

    CAS  Google Scholar 

  259. Lawagon CP, Nisola GM, Cuevas RAI, Kim H, Lee S-P, Chung W-J (2018) Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chem Eng J 348:1000–1011

    CAS  Google Scholar 

  260. Trocoli R, Battistel A, La Mantia F (2015) Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery. ChemSusChem 8:2514–2519

    CAS  Google Scholar 

  261. Palagonia MS, Brogioliz D, Mantia FL (2017) Influence of hydrodynamics on the lithium recovery efficiency in an electrochemical ion pumping separation process. J Electrochem Soc 164:E586–E595

    CAS  Google Scholar 

  262. Trócoli R, Erinmwingbovo C, La Mantia F (2017) Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate. ChemElectroChem 4:143–149

    Google Scholar 

  263. Wang P, Du X, Chen T, Hao X, Abudula A, Tang K, Guan G (2019) A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. Electrochim Acta 306:35–44

    CAS  Google Scholar 

  264. Pan X-J, Dou Z-H, Meng D-L, Han X-X, Zhang T-A (2020) Electrochemical separation of magnesium from solutions of magnesium and lithium chloride. Hydrometallurgy 191:105166

    CAS  Google Scholar 

  265. Kim S, Joo H, Moon T, Kim SH, Yoon J (2019) Rapid and selective lithium recovery from desalination brine using an electrochemical system. Environ Sci Process Impacts 21:667–676

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Japan Society for the Promotion of Science (Kakenhi Nos. 20H00288, 26420721), the Qaidam Salt Chemical Joint Fund of National Natural Science Foundation of China—People’s Government of Qinghai Province (U1607117), the Anhui Province International Science and Technology Cooperation Program (1704e1002213), and the Natural Science Foundation of Anhui Province (1808085ME145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenzhen Xu or Qing-Qing Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Hong, J., Qian, X. et al. Materials for lithium recovery from salt lake brine. J Mater Sci 56, 16–63 (2021). https://doi.org/10.1007/s10853-020-05019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05019-1

Navigation