Skip to main content

Advertisement

Log in

Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries. Herein, Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes (Sb@N-C nanotubes) are used as freestanding anode for Li-ion batteries (LIBs) and K-ion batteries (PIBs). The Sb@N-C nanotubes demonstrate exceptional reversible capacity of 643 mAh·g−1 at 0.1 A·g−1 with long cycle stability, as well as outstanding rate performance (219.6 mAh·g−1 at 10 A·g−1) in LIBs. As the anode material of PIBs, they reveal impressive capacity of 325.4 mAh·g−1 at 0.1 A·g−1. The superior electrochemical properties mainly originate from the novel structure. To be specific, the obtained 3D connected network allows for quick ion and electron migration, and prevents the aggregation of Sb nanoparticles. The hollow porous nanotubes can not only accommodate the volume expansion of Sb nanoparticles during cycling, but also facilitate the infiltration of the electrolyte and reduce the ion diffusion length. This work provides a new insight for designing advanced Sb-based anodes for alkali metal ion batteries.

Graphical abstract

摘要

锑基材料因为具有较高的理论容量被认为是碱金属离子电池负极材料有希望的候选者。在此工作中, 我们制备了一种Sb纳米颗粒嵌入氮掺杂的中空多孔碳纳米管(Sb@N-C nanotubes)的自支撑材料, 并将其应用于锂离子电池(LIBs)和钾离子电池(PIBs)。用于LIBs时, Sb@N-C纳米管在 0.1 A·g−1的电流密度下循环250圈后, 保持643 mAh·g−1 的可逆比容量, 表现出优异的循环稳定性, 并表现出良好的倍率性能(电流密度为10 A·g−1时, 比容量为219.6 mAh·g−1)。作为PIBs的负极材料时, Sb@N-C纳米管在电流密度为0.1 A·g−1时展示出325.4 mAh·g−1可逆比容量。上述优异的电化学性能主要源于新颖的材料结构。具体来讲, 静电纺丝所制备的三维互联的纳米纤维有利于离子和电子的快速迁移, 并有效防止锑纳米粒子的团聚。中空多孔纳米管不仅可以缓解Sb纳米颗粒在循环过程中的体积膨胀, 提高材料循环稳定性; 还可以促进电解质的浸润, 并缩短离子扩散距离, 从而提高反应动力学。这项工作为设计碱金属离子电池的先进Sb基负极材料提供了新的见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu Y, Sun X. Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A. 2014;2(28):10712. https://doi.org/10.1039/C4TA00716F.

    Article  CAS  Google Scholar 

  2. Lin XP, Xue DY, Zhao LZ, Zong FY, Duan XC, Pan X, Zhang JM, Li QH. In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: a three-dimensional heterostructure for highperformance flexible lithium-ion batteries. Chem Eng J. 2019;356(15):483. https://doi.org/10.1016/j.cej.2018.08.208.

    Article  CAS  Google Scholar 

  3. Hu XL, Zhang W, Liu XX, Mei YN, Huang YH. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev. 2015;44(8):2376. https://doi.org/10.1039/C4CS00350K.

    Article  CAS  Google Scholar 

  4. Xue FF, Li YY, Liu C, Zhang ZG, Lin J, Hao JY, Li QH. Engineering flexible carbon nanofiber concatenated MOF-derived hollow octahedral CoFe2O4 as an anode material for enhanced lithium storage. Inorg Chem Front. 2021;8(13):3363. https://doi.org/10.1039/D1QI00414J.

    Article  CAS  Google Scholar 

  5. Zhang Y, Chen PH, Gao X, Wang B, Liu H, Wu H, Liu HK, Dou SX. Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Funct Mater. 2016;26(43):7754. https://doi.org/10.1002/adfm.201603716.

    Article  CAS  Google Scholar 

  6. Zhao ZJ, Chao YG, Wang F, Dai JY, Qin YF, Bao XB, Yang Y, Guo SJ. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Met. 2022;41(4):1245. https://doi.org/10.1007/s12598-021-01850-w.

    Article  CAS  Google Scholar 

  7. Zhao J, Li CL, Chen G, Ji F, Shen YY, Peng J, Wang WH. Rational design of Sn4P3/Ti3C2Tx composite anode with enhanced performance for potassium-ion battery. Rare Met. 2022. https://doi.org/10.1007/s12598-021-01934-7.

    Article  Google Scholar 

  8. Yang WX, Zhou JX, Wang S, Zhang WY, Wang ZC, Lv F, Wang K, Sun Q, Guo SJ. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci. 2019;12(5):1605. https://doi.org/10.1039/C9EE00536F.

    Article  CAS  Google Scholar 

  9. Lin HZ, Li ML, Yang X, Yu DY, Zeng Y, Wang CZ, Chen G, Du F. Nanosheets assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv Energy Mater. 2019;9(20):1900323. https://doi.org/10.1002/aenm.201900323.

    Article  CAS  Google Scholar 

  10. Xue FF, Lin XP, Li YY, Zhang ZG, Lin J, Li QH. Electrospun of CoSn nanoboxes@carbon nanotubes as free-standing anodes for high-performance lithium-/potassium-ion batteries. Appl Surf Sci. 2021;565(1):150599. https://doi.org/10.1016/j.apsusc.2021.150599.

    Article  CAS  Google Scholar 

  11. Liao JY, Chen CL, Hu Q, Du YC, He YN, Xu YF, Zhang ZZ, Zhou XS. A low-strain phosphate cathode for high-rate and ultralong cycle life potassium-ion batteries. Angew Chem Int Ed. 2021;60(48):25575. https://doi.org/10.1002/anie.202112183.

    Article  CAS  Google Scholar 

  12. He YN, Xu YF, Zhang M, Xu JZ, Chen BB, Zhang YX, Bao JC, Zhou XS. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Sci Bull. 2022;67(2):151. https://doi.org/10.1016/j.scib.2021.09.020.

    Article  CAS  Google Scholar 

  13. He XD, Liu ZH, Liao JY, Ding X, Hu Q, Xiao LN, Wang S, Chen CH. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A. 2019;7(16):9629. https://doi.org/10.1039/C9TA01968E.

    Article  CAS  Google Scholar 

  14. Zheng J, Yang Y, Fan XL, Ji GB, Ji X, Wang HY, Hou S, Zachariah MR, Wang CS. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ Sci. 2019;12(2):615. https://doi.org/10.1039/C8EE02836B.

    Article  CAS  Google Scholar 

  15. Mao ML, Cui CY, Wu MG, Zhang M, Gao T, Fan XL, Chen J, Wang TH, Ma JM, Wang CS. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy. 2018;45:346. https://doi.org/10.1016/j.nanoen.2018.01.001.

    Article  CAS  Google Scholar 

  16. Zhao WX, Zou L, Ma XQ, Zhang WL, Li YD, Wang GZ, Zhang P, Xia LP. Ultrafine Sb nanoparticles embedded in nitrogen-doped carbon nanofibers as ultralong cycle durability and high-rate anode materials for reversible sodium storage. Electrochim Acta. 2019;300:396. https://doi.org/10.1016/j.electacta.2019.01.138.

    Article  CAS  Google Scholar 

  17. Xu X, Si L, Zhou XS, Tu FZ, Zhu XS, Bao JC. Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion battery anode. J Power Sources. 2017;349:37. https://doi.org/10.1016/j.jpowsour.2017.03.026.

    Article  CAS  Google Scholar 

  18. Li HX, Wang JW, Jiao LF, Tao ZL, Liang J. Spherical nano-SnSb/C composite as a high-performance anode material for sodium ion batteries. Acta Phys Chim Sin. 2020;36(5):1904017. https://doi.org/10.3866/PKU.WHXB201904017.

    Article  CAS  Google Scholar 

  19. Song JH, Yan PF, Luo LL, Qi XG, Rong XH, Zheng JM, Xiao BW, Feng S, Wang CM, Hu YS, Lin YH, Sprenkle VL, Li XL. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy. 2017;40:504. https://doi.org/10.1016/j.nanoen.2017.08.051.

    Article  CAS  Google Scholar 

  20. Liang LY, Xu Y, Wen LY, Li YL, Zhou M, Wang CL, Zhao HP, Kaiser U, Lei Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Res. 2017;10:3189. https://doi.org/10.1007/s12274-017-1536-0.

    Article  CAS  Google Scholar 

  21. Yi Z, Han QG, Zan P, Wu YM, Cheng Y, Wang LM. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J Power Sources. 2016. https://doi.org/10.1016/j.jpowsour.2016.09.027.

    Article  Google Scholar 

  22. Luo W, Lorger S, Wang B, Bommier C, Ji XL. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chem Commun. 2014;50(41):5435. https://doi.org/10.1039/C4CC01326C.

    Article  CAS  Google Scholar 

  23. Li QH, Zhang W, Peng J, Zhang W, Liang ZX, Wu JW, Feng JJ, Li HX, Huang SM. Metal-organic framework derived ultrafine Sb@porous carbon octahedron via in situ substitution for high-performance sodiumIon batteries. ACS Nano. 2021;15(9):15104. https://doi.org/10.1021/acsnano.1c05458.

    Article  CAS  Google Scholar 

  24. Hou HS, Jing MJ, Yang YC, Zhang Y, Zhu YR, Song WX, Yang XM, Ji XB. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A. 2015;3(6):2971. https://doi.org/10.1039/C4TA06476C.

    Article  CAS  Google Scholar 

  25. Mao ML, Yan FL, Cui CY, Ma JM, Zhang M, Wang TH, Wang CS. Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 2017;17(6):3830. https://doi.org/10.1021/acs.nanolett.7b01152.

    Article  CAS  Google Scholar 

  26. Huang HW, Wang JW, Yang XF, Hu RZ, Liu JL, Zhang L, Zhu M. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew Chem Int Ed. 2020;59(34):2. https://doi.org/10.1002/anie.202004193.

    Article  CAS  Google Scholar 

  27. Yu Y, Gu L, Zhu CB, van Aken PA, Maier J. Tin nanoparticles encapsulated in porous multichannel carbon microtubues preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc. 2009;131(44):15984. https://doi.org/10.1021/ja906261c.

    Article  CAS  Google Scholar 

  28. Bazilevsky AV, Yarin AL, Megaridis CM. Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir. 2007;23(5):2311. https://doi.org/10.1021/la063194q.

    Article  CAS  Google Scholar 

  29. Kim C, Jeong YI, Ngoc BTN, Yang KS, Kojima M, Kim YA, Endo M, Lee JW. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolmeric nanofiber webs. Small. 2007;3(1):91. https://doi.org/10.1002/smll.200600243.

    Article  CAS  Google Scholar 

  30. Hong CK, Yang KS, Oh SH, Ahn JH, Cho BH, Nah CC. Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polym Int. 2008;57(12):1357. https://doi.org/10.1002/pi.2481.

    Article  CAS  Google Scholar 

  31. Qin J, He CN, Zhao NQ, Wang ZY, Shi CS, Liu EZ, Li JJ. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728. https://doi.org/10.1021/nn406105n.

    Article  CAS  Google Scholar 

  32. Li XF, Dhanabalan A, Gu L, Wang CL. Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv Energy Mater. 2012;2(2):238. https://doi.org/10.1002/aenm.201100380.

    Article  CAS  Google Scholar 

  33. Chen RP, Xue XL, Lu JY, Chen T, Hu Y, Ma LB, Zhu GY, Jin Z. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries. Nanoscale. 2019;11(18):8803. https://doi.org/10.1039/C9NR00159J.

    Article  CAS  Google Scholar 

  34. Zhang N, Liu YC, Lu YY, Han XP, Cheng FY, Chen J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015;8:3384. https://doi.org/10.1007/s12274-015-0838-3.

    Article  CAS  Google Scholar 

  35. Yang QQ, Zhou J, Zhang GQ, Guo C, Li M, Zhu YC, Qian YT. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J Mater Chem A. 2017;5(24):12144. https://doi.org/10.1039/C7TĂ0F.

    Article  CAS  Google Scholar 

  36. Yu H, Fan HS, Yadian B, Tan HT, Liu WL, Hng HH, Huang YZ, Yan QY. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl Mater Interfaces. 2015;7(48):26751. https://doi.org/10.1021/acsami.5b08741.

    Article  CAS  Google Scholar 

  37. Hu YY, Liu ZG, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu XQ, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater. 2013;12:1130. https://doi.org/10.1038/nmat3784.

    Article  CAS  Google Scholar 

  38. Yang T, Liu JW, Yang DX, Mao QN, Zhong JS, Yuan YJ, Li XY, Zheng X, Ji ZG, Liu H, Wang GX, Zheng RK. Bi2Se3@C rod-like architecture with outstanding electrochemical properties in lithium/potassium-ion batteries. ACS Appl Energy Mater. 2020;3(11):11073. https://doi.org/10.1021/acsaem.0c02056.

    Article  CAS  Google Scholar 

  39. Xu LH, Chen XC, Guo WT, Zeng LX, Yang T, Xiong PX, Chen QH, Zhang JM, Wei MD, Qian QR. Co-construction of sulfur vacancies and carbon confinement in V5S8/ CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale. 2021;13(9):5033. https://doi.org/10.1039/D0NR08788B.

    Article  CAS  Google Scholar 

  40. Zhang ZG, Lin J, Hao JY, Xue FF, Gu YF, Zhu ZC, Li QH. Exploration of fast ion diffusion kinetics in graphene nanoscrolls encapsulated CoSe2 as advanced anode for high-rate sodium-ion batteries. Carbon. 2021;181(30):69. https://doi.org/10.1016/j.carbon.2021.04.095.

    Article  CAS  Google Scholar 

  41. Wang H, Wu X, Qi XJ, Zhao W, Ju ZC. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater Res Bull. 2018;103:32. https://doi.org/10.1016/j.materresbull.2018.03.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2019YFB2205005) and the Natural Science Foundation of Fujian Province (No. 2020 J01050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Hong Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Xiao-Ping Lin and Fang-Fang Xue contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4818 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, XP., Xue, FF., Zhang, ZG. et al. Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries. Rare Met. 42, 449–458 (2023). https://doi.org/10.1007/s12598-022-02143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02143-6

Keywords

Navigation