Skip to main content

Advertisement

Log in

High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As the earliest commercial cathode material for lithium-ion batteries, lithium cobalt oxide (LiCoO2) shows various advantages, including high theoretical capacity, excellent rate capability, compressed electrode density, etc. Until now, it still plays an important role in the lithium-ion battery market. Due to these advantages, further increasing the charging cutoff voltage of LiCoO2 to guarantee higher energy density is an irresistible development trend of LiCoO2 cathode materials in the future. However, using high charging cutoff voltage may induce a lot of negative effects, especially the rapid decay of cycle capacity. These are mainly caused by rapid destruction of crystal structure and aggravation of interface side reaction at high voltage during the cycle. Therefore, how to maintain a stable crystal structure of LiCoO2 to ensure the excellent long cycle performance at high voltage is a hot research issue in the further application of LiCoO2. In this review, we summarized the failure causes and extensive solutions of LiCoO2 at high voltage and promoted some new modification strategies. Moreover, the development trend of solving the failure problem of high-voltage LiCoO2 in the future such as defect engineering and high-temperature shock technique is also discussed.

Graphical abstract

摘要

钴酸锂 (LiCoO2) 作为最早商业化的锂离子电池正极材料, 具有理论容量高, 倍率性能好, 压实密度高等优点. 至今, 在锂离子电池市场上仍占有重要地位. 基于上述优点, 进一步提高LiCoO2的充电截止电压以保证更高的能量密度是未来LiCoO2正极材料不可阻挡的发展趋势. 然而, 使用高充电截止电压可能会引发较多负面影响, 尤其是循环过程中容量的快速衰减. 这主要是由循环过程中晶体结构的快速破坏和高压下界面副反应的加剧所导致. 因此, 如何保持高电压下LiCoO2稳定的晶体结构, 确保其在高电压下具有优异的长周期性能, 是LiCoO2进一步应用的研究热点. 本综述中, 我们总结了LiCoO2在高电压下失效的原因和常用的解决方案, 并提出了一些新的改进策略. 此外, 我们还讨论了今后解决LiCoO2在高电压下失效问题的发展方向, 比如利用缺陷工程和高温热冲击技术.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [21]. Copyright 2004, Elsevier. b Schematic illustration of three host structures O3, O2, O1. Reproduced with permission from Ref. [22]. Copyright 2012, American Chemical Society. c Schematic illustration of stacking (110 projection) in c direction of O–Co–O slabs of Li1−xCoO2 in O3 and H1–3 phases. Reproduced with permission from Ref. [21]. Copyright 2004, Elsevier

Fig. 2

Reproduced with permission from Ref. [35]. Copyright 2021, Wiley–VCH

Fig. 3

Reproduced with permission from Ref. [3]. Copyright 2019, Springer Nature

Fig. 4

Reproduced with permission from Ref. [43]. Copyright 2020, Elsevier

Fig. 5

Reproduced with permission from Ref. [51]. Copyright 2020, Wiley–VCH. b Microstructural diagram of Li1.098Mn0.533Ni0.113Co0.138O2 (LLLO). Reproduced with permission from Ref. [8]. Copyright 2019 American Chemical Society. c Ultrafast temperature rise and cool down with extremely short thermal insulation. d Effects of structural modifications on motion of dislocations by HTS technology. Reproduced with permission from Ref. [14]. Copyright 2020, Wiley–VCH

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15(6):783.

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587.

    Article  CAS  Google Scholar 

  3. Zhang JN, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang XQ, Huang X, Chen L, Li H. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy. 2019;4(7):594.

    Article  CAS  Google Scholar 

  4. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang JG. Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater. 2017;7(6):1601284.

    Article  Google Scholar 

  5. Wang K, Wan JJ, Xiang YX, Zhu JP, Leng QY, Wang M, Xu LM, Yang Y. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J Power Sources. 2020;460:228062.

    Article  CAS  Google Scholar 

  6. Wang X, Wang XY, Lu YY. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind Eng Chem Res. 2019;58(24):10119.

    Article  CAS  Google Scholar 

  7. Lee S, Jin W, Kim SH, Joo SH, Nam G, Oh P, Kim YK, Kwak SK, Cho J. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew Chem Int Ed. 2019;58(31):10478.

    Article  CAS  Google Scholar 

  8. Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu ZZ, Peng Y, Mai L, Peng DL. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc. 2019;141(27):10876.

    Article  CAS  Google Scholar 

  9. Wang R, Chen X, Huang Z, Yang J, Liu F, Chu M, Liu T, Wang C, Zhu W, Li S, Li S, Zheng J, Chen J, He L, Jin L, Pan F, Xiao Y. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat Commun. 2021;12(1):3085.

    Article  CAS  Google Scholar 

  10. Chen YN, Egan GC, Wan JY, Zhu SZ, Jacob RJ, Zhou WB, Dai JQ, Wang YB, Danner VA, Yao YG, Fu K, Wang YB, Bao WZ, Li T, Zachariah MR, Hu LB. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat Commun. 2016;7:12332.

    Article  CAS  Google Scholar 

  11. Dou S, Xu J, Cui X, Liu W, Zhang Z, Deng Y, Hu W, Chen Y. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv Energy Mater. 2020;10(33):2001331.

    Article  CAS  Google Scholar 

  12. Jiang R, Da YM, Han XP, Chen YA, Deng YD, Hu WB. Ultrafast synthesis for functional nanomaterials. Cell Rep Phys Sci. 2021;2(1):100302.

    Article  CAS  Google Scholar 

  13. Liu C, Zhou W, Zhang J, Chen Z, Liu S, Zhang Y, Yang J, Xu L, Hu W, Chen Y, Deng Y. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv Energy Mater. 2020;10(46):2001397.

    Article  CAS  Google Scholar 

  14. Liu S, Hu Z, Wu Y, Zhang J, Zhang Y, Cui B, Liu C, Hu S, Zhao N, Han X, Cao A, Chen Y, Deng Y, Hu W. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv Mater. 2020;32(48):2006034.

    Article  CAS  Google Scholar 

  15. Liu SL, Shen Y, Zhang Y, Cui BH, Xi SB, Zhang JF, Xu LY, Zhu SZ, Chen YA, Deng YD, Hu WB. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv Mater. 2021;34(2):2106973.

    Article  Google Scholar 

  16. Wu H, Lu Q, Zhang J, Wang J, Han X, Zhao N, Hu W, Li J, Chen Y, Deng Y. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 2020;12(1):162.

    Article  CAS  Google Scholar 

  17. Yano A, Shikano M, Ueda A, Sakaebe H, Ogumi Z. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating. J Electrochem Soc. 2017;164(1):A6116.

    Article  CAS  Google Scholar 

  18. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1550.

    Article  CAS  Google Scholar 

  19. Van der Ven A, Ceder G. Lithium diffusion mechanisms in layered intercalation compounds. J Power Sources. 2001;97–8:529.

    Google Scholar 

  20. Park M, Zhang XC, Chung MD, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195(24):7904.

    Article  CAS  Google Scholar 

  21. Chen Z, Dahn JR. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta. 2004;49(7):1079.

    Article  CAS  Google Scholar 

  22. Lu X, Sun Y, Jian Z, He X, Gu L, Hu YS, Li H, Wang Z, Chen W, Duan X, Chen L, Maier J, Tsukimoto S, Ikuhara Y. New insight into the atomic structure of electrochemically delithiated O3-Li(1–x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 2012;12(12):6192.

    Article  CAS  Google Scholar 

  23. Sun LW, Zhang ZS, Hu XF, Tian HY, Zhang YB, Yang XG. Realization of Ti doping by electrostatic assembly to improve the stability of LiCoO2 cycled to 4.5 V. J Electrochem Soc. 2019;166(10):A1793.

    Article  CAS  Google Scholar 

  24. Marianetti CA, Kotliar G, Ceder G. A first-order Mott transition in LixCoO2. Nat Mater. 2004;3(9):627.

    Article  CAS  Google Scholar 

  25. Menetrier M, Saadoune I, Levasseur S, Delmas C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and Li-7 NMR study. J Mater Chem. 1999;9(5):1135.

    Article  CAS  Google Scholar 

  26. Shao-Horn Y, Levasseur S, Weill F, Delmas C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x approximate to 0.5) - an electron diffraction study. J Electrochem Soc. 2003;150(3):A366.

    Article  CAS  Google Scholar 

  27. Carroll KJ, Qian D, Fell C, Calvin S, Veith GM, Chi MF, Baggetto L, Meng YS. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Phys Chem Chem Phys. 2013;15(26):11128.

    Article  CAS  Google Scholar 

  28. Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, Staniewicz RJ. Main aging mechanisms in Li ion batteries. J Power Sources. 2005;146(1–2):90.

    Article  CAS  Google Scholar 

  29. Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen HA. Comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc. 1996;143(12):3809.

    Article  CAS  Google Scholar 

  30. Wang YG, Yi J, Xia YY. Recent progress in aqueous lithium-ion batteries. Adv Energy Mater. 2012;2(7):830.

    Article  CAS  Google Scholar 

  31. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694.

    Article  CAS  Google Scholar 

  32. Poozhikunnath A, Favata J, Ahmadi B, Xiong JC, Bonville L, Shahbazmohamadi S, Jankovic J, Maric R. Correlative microscopy-based approach for analyzing microscopic impurities in carbon black for lithium-ion battery applications. J Electrochem Soc. 2019;166(14):A3335.

    Article  CAS  Google Scholar 

  33. Imhof R, Novak P. Oxidative electrolyte solvent degradation in lithium-ion batteries - an in situ differential electrochemical mass spectrometry investigation. J Electrochem Soc. 1999;146(5):1702.

    Article  CAS  Google Scholar 

  34. Vetter J, Holzapfel M, Wuersig A, Scheifele W, Ufheil J, Novak P. In situ study on CO2 evolution at lithium-ion battery cathodes. J Power Sources. 2006;159(1):277.

    Article  CAS  Google Scholar 

  35. Kong W, Zhang J, Wong D, Yang W, Yang J, Schulz C, Liu X. Tailoring Co 3d and O 2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew Chem Int Ed. 2021;60(52):27102.

    Article  CAS  Google Scholar 

  36. Lyu YC, Wu X, Wang K, Feng ZJ, Cheng T, Liu Y, Wang M, Chen RM, Xu LM, Zhou JJ, Lu YH, Guo BK. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater. 2021;11(2):2000982.

    Article  CAS  Google Scholar 

  37. Li WW, Zhang XJ, Si JJ, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 2021;40(7):1719.

    Article  Google Scholar 

  38. Wang JH, Wang Y, Guo YZ, Liu CW, Dan LL. Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met. 2021;40(1):78.

    Article  Google Scholar 

  39. Jung K, Yim T. Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials. Rare Met. 2021;40(10):2793.

    Article  CAS  Google Scholar 

  40. Kim Y, Park H, Shin K, Henkelman G, Warner JH, Manthiram A. Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries. Adv Energy Mater. 2021;11(38):2101112.

    Article  CAS  Google Scholar 

  41. Zhang J, Wang PF, Bai P, Wan H, Liu S, Hou S, Pu X, Xia J, Zhang W, Wang Z, Nan B, Zhang X, Xu J, Wang C. Interfacial design for 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv Mater. 2022;34(8):2108353.

    Article  CAS  Google Scholar 

  42. Liu WJ, Sun XZ, Zhang X, Li C, Wang K, Wen W, Ma YW. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Met. 2021;40(3):521.

    Article  CAS  Google Scholar 

  43. Nie K, Sun X, Wang J, Wang Y, Qi W, Xiao D, Zhang JN, Xiao R, Yu X, Li H, Huang X, Chen L. Realizing long-term cycling stability and superior rate performance of 45 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. J Power Sources. 2020;470:228423.

    Article  CAS  Google Scholar 

  44. Yang Q, Huang J, Li Y, Wang Y, Qiu J, Zhang J, Yu H, Yu X, Li H, Chen L. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J Power Sources. 2018;388:65.

    Article  CAS  Google Scholar 

  45. Chen H, Wen Y, Wang Y, Zhang S, Zhao P, Ming H, Cao G, Qiu J. Direct surface coating of high voltage LiCoO2 cathode with P(VDF-HFP) based gel polymer electrolyte. RSC Adv. 2020;10(41):24533.

    Article  CAS  Google Scholar 

  46. Zhang S, Liu Y, Qi M, Cao A. Localized surface doping for improved stability of high energy cathode materials. Acta Phys-Chim Sin. 2021;37(11):2011007.

    Google Scholar 

  47. Liu Y, Zhu H, Zhu H, Ren Y, Zhu Y, Huang Y, Dai L, Dou S, Xu J, Sun CJ, Wang XL, Deng Y, Yuan Q, Liu X, Wu J, Chen Y, Liu Q. Modulating the surface ligand orientation for stabilized anionic redox in Li-rich oxide cathodes. Adv Energy Mater. 2021;11(13):2003479.

    Article  CAS  Google Scholar 

  48. Zhang ZC, Liu GG, Cui XY, Gong Y, Yi D, Zhang QH, Zhu CZ, Saleem F, Chen B, Lai ZC, Yun QB, Cheng HF, Huang ZQ, Peng YW, Fan ZX, Li B, Dai WR, Chen W, Du YH, Ma L, Sun CJ, Hwang IH, Chen SM, Song L, Ding F, Gu L, Zhu YH, Zhang H. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci Adv. 2021;7(13):eabd6647.

    Article  CAS  Google Scholar 

  49. Saleem F, Zhang Z, Cui X, Gong Y, Chen B, Lai Z, Yun Q, Gu L, Zhang H. Elemental segregation in multimetallic core-shell nanoplates. J Am Chem Soc. 2019;141(37):14496.

    Article  CAS  Google Scholar 

  50. Chen Y, Lai Z, Zhang X, Fan Z, He Q, Tan C, Zhang H. Phase engineering of nanomaterials. Nat Rev Chem. 2020;4(5):243.

    Article  CAS  Google Scholar 

  51. Zhang YQ, Tao L, Xie C, Wang DD, Zou YQ, Chen R, Wang YY, Jia CK, Wang SY. Defect engineering on electrode materials for rechargeable batteries. Adv Mater. 2020;32(7):e1905923.

    Article  Google Scholar 

  52. Liu T, Yu L, Lu J, Zhou T, Huang X, Cai Z, Dai A, Gim J, Ren Y, Xiao X, Holt MV, Chu YS, Arslan I, Wen J, Amine K. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat Commun. 2021;12(1):6024.

    Article  CAS  Google Scholar 

  53. Peng J, Zhang W, Zheng M, Hu H, Xiao Y, Liu Y, Liang Y. Propelling electrochemical kinetics of transition metal oxide for high-rate lithium-ion battery through in situ deoxidation. J Colloid Interface Sci. 2021;587:590.

    Article  CAS  Google Scholar 

  54. Guo H, Wei Z, Jia K, Qiu B, Yin C, Meng F, Zhang Q, Gu L, Han S, Liu Y, Zhao H, Jiang W, Cui H, Xia Y, Liu Z. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 2019;16:220.

    Article  Google Scholar 

  55. Zhang J, Gao R, Sun L, Li Z, Zhang H, Hu Z, Liu X. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Phys Chem Chem Phys. 2016;18(36):25711.

    Article  CAS  Google Scholar 

  56. Zhao J, Huang R, Gao W, Zuo JM, Zhang XF, Misture ST, Chen Y, Lockard JV, Zhang B, Guo S, Khoshi MR, Dooley K, He H, Wang Y. An ion-exchange promoted phase transition in a Li-excess layered cathode material for high-performance lithium ion batteries. Adv Energy Mater. 2015;5(9):1401937.

    Article  Google Scholar 

  57. Xu M, Fei L, Lu W, Chen Z, Li T, Liu Y, Gao G, Lai Y, Zhang Z, Wang P, Huang H. Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. Nano Energy. 2017;35:271.

    Article  CAS  Google Scholar 

  58. Hong YS, Huang X, Wei C, Wang J, Zhang JN, Yan H, Chu YS, Pianetta P, Xiao R, Yu X, Liu Y, Li H. Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem. 2020;6(10):2759.

    Article  CAS  Google Scholar 

  59. Liu Y, Wang J, Wu J, Ding Z, Yao P, Zhang S, Chen Y. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv Energy Mater. 2019;10(5):1903139.

    Article  Google Scholar 

  60. Liu Y, Chen Y, Wang J, Wang W, Ding Z, Li L, Zhang Y, Deng Y, Wu J, Chen Y. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022;15(4):3178. https://doi.org/10.1007/s12274-021-3890-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52171219 and 91963113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ya Cui or Ya-Nan Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JC., Liu, ZD., Zeng, CH. et al. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met. 41, 3946–3956 (2022). https://doi.org/10.1007/s12598-022-02070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02070-6

Keywords

Navigation