Skip to main content
Log in

Self-assembly of nanoparticles at solid–liquid interface for electrochemical capacitors

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Self-assembly of nanoparticles at solid–liquid interface could be promising to realize the assembled functions for various applications, such as rechargeable batteries, supercapacitors, and electrocatalysis. This review summarizes the self-assembly of the nanoparticles at solid–liquid interface according to the different driving forces of assembly, including hydrophilic–hydrophobic interactions, solvophobic and electrostatic interaction. To be specific, the self-assembly can be divided into the following two types: surfactant-assisted self-assembly and direct self-assembly of Janus particles (inorganic and amphiphilic copolymer-inorganic Janus nanoparticles). Using the emulsion stabilized by nanoparticles as the template, the self-assembly constructed by the interaction of the nanostructure unit (including metal, metal oxide, and semiconductor, etc.) not only possesses the characteristic of nanostructure unit, but also exhibits the excellent assembly performance in electrochemistry aspect. The application of these assemblies in the area of electrochemical capacitors is presented. Finally, the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid–liquid interface are proposed.

Graphical abstract

摘要

固液界面处纳米颗粒的自组装有望实现在可充电电池、超级电容器和电催化等领域的组装 功能。这篇综述总结了纳米粒子在固-液界面上的自组装可根据驱动力的不同, 分为亲水-疏 水相互作用、疏溶作用和静电相互作用。具体而言, 自组装可以分为以下两种类型: 表面 活性剂辅助自组装和Janus 粒子(无机和两亲性共聚物-无机Janus 纳米粒子)直接自组装。以纳米颗粒稳定的乳液为模板, 由纳米结构单元(包括金属、金属氧化物或半导体等)相互作 用构建的自组装不仅具有纳米结构单元的特性, 而且在宏观电化学方面也表现出优异的组 装特性, 文章也介绍了这些组件在电化学电容器领域的应用。最后, 提出了在固液界面处 纳米颗粒自组装的研究进展和展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [35]. Copyright 2007, Wiley. c Self-assembled mechanism of multilayered plasmonic superstructures; d, e scanning electron microscope (SEM) images of self-assembled Au plasmonic superstructures. Reproduced with permission from Ref. [36]. Copyright 2015, Wiley. f Self-assembly process of hierarchical ZnMn2O4 hollow microspheres; g SEM image of self-supporting ZnMn2O4 microspheres. Reproduced with permission from Ref. [37]. Copyright 2014, Elsevier Publishing Group

Fig. 4

Reproduced with permission from Ref. [38]. Copyright 2013, American Chemical Society

Fig. 5

Copyright 2016, American Chemical Society. c Schematic illustration of formation mechanism of nanoscale colloidosomes: a key step is to form Janus bilayer on nanocrystal surfaces, where DTAB is dodecyltrimethylammonium bromide, ODE is octadecene; d 2D HAADF-STEM projection image from tilt series of half-filled superstructures. Reproduced with permission from Ref. [68]. Copyright 2016, American Chemical Society. e 3D self-assembly of Au@PS nanoparticles, where THF is tetrahydrofuran; f TEM image of Au@PS nanoparticles. Reproduced with permission from Ref. [69]. Copyright 2012, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [74]. Copyright 2013, American Chemical Society. Bright-field TEM images of hybrid micelles formed from: b PS51k-b-P4VP17k(PDP)2.0; c PS110k-b-P4VP107k(PDP)1.0 encapsulated of nanorods (content of 27 vol%, diameter of 7 nm, and length of 29 nm), where nanorods were grafted with mixed PS brushes (PS2k:PS12k = 1:1). Reproduced with permission from Ref. [75]. Copyright 2013, American Chemical Society. d Morphologies and nanorod concentrations. Reproduced with permission from Ref. [76]. Copyright 2010, Elsevier

Fig. 7

Reproduced with permission from Ref. [87]. Copyright 2019, Wiley

Fig. 8

Reproduced with permission from Ref. [100]. Copyright 2017, Wiley

Fig. 9

Reproduced with permission from Ref. [107]. Copyright 2020, Elsevier

Fig. 10

Reproduced with permission from Ref. [113]. Copyright 2018, Wiley

Similar content being viewed by others

References

  1. Grzelczak M, Liz-Marza´n LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev. 2019;48(5):1342. https://doi.org/10.1039/C8CS00787J.

    Article  CAS  Google Scholar 

  2. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295(5564):2418. https://doi.org/10.1126/science.1070821.

    Article  CAS  Google Scholar 

  3. Shi Q, Dong DS, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng W. Shape transformation of constituent building blocks within self-assembled nanosheets and nano-origami. ACS Nano. 2018;12(2):1014. https://doi.org/10.1021/acsnano.7b08334.

    Article  CAS  Google Scholar 

  4. Wang T, LaMontagne D, Lynch J, Zhuang J, Cao YC. Colloidal superparticles from nanoparticle assembly. Chem Soc Rev. 2013;42(7):2804. https://doi.org/10.1039/C2CS35318K.

    Article  CAS  Google Scholar 

  5. Jain T, Roodbeen R, Reeler NE, Vosch T, Jensen KJ, Bjornholm T, Norgaard K. End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control. J Colloid Interface Sci. 2012;376:83. https://doi.org/10.1016/j.jcis.2012.03.022.

    Article  CAS  Google Scholar 

  6. Dong D, Yap LW, Smilgies DM, Si KJ, Shi Q, Cheng W. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications. Nanoscale. 2018;10(11):5065. https://doi.org/10.1039/C7NR09443D.

    Article  CAS  Google Scholar 

  7. Rao SY, Si KJ, Yap LW, Xiang Y, Cheng WL. Free-standing bi-layered nanoparticle superlattice nanosheets with asymmetric ionic transport behaviors. ACS Nano. 2015;9(11):11218. https://doi.org/10.1021/acsnano.5b04784.

    Article  CAS  Google Scholar 

  8. Florea D, Wyss HM. Towards the self-assembly of anisotropic colloids: monodisperse oblate ellipsoids. J Colloid Interface Sci. 2014;416:30. https://doi.org/10.1016/j.jcis.2013.10.027.

    Article  CAS  Google Scholar 

  9. Zhao Y, Shang L, Cheng Y, Gu Z. Spherical colloidal photonic crystals. Acc Chem Res. 2014;47(12):3632. https://doi.org/10.1021/ar500317s.

    Article  CAS  Google Scholar 

  10. Lucio Isa KK, Mischa Müller JG, Marcus T, Erik R. Particle lithography from colloidal self-assembly at liquid-liquid interfaces. ACS Nano. 2010;4(10):5665. https://doi.org/10.1021/nn101260f.

    Article  CAS  Google Scholar 

  11. Ng KC, Udagedara IB, Rukhlenko ID, Chen Y, Tang Y, Premaratne M, Cheng WL. Free-standing plasmonic-nanorod superlattice sheets. ACS Nano. 2012;6(1):925. https://doi.org/10.1021/nn204498j.

    Article  CAS  Google Scholar 

  12. Si KJ, Chen Y, Shi Q, Cheng W. Nanoparticle superlattices: the roles of soft ligands. Adv Sci. 2018;5(1):1700179. https://doi.org/10.1002/advs.201700179.

    Article  CAS  Google Scholar 

  13. Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289. https://doi.org/10.1126/science.1062711.

    Article  CAS  Google Scholar 

  14. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001;409:66. https://doi.org/10.1038/35051047.

    Article  CAS  Google Scholar 

  15. Rymaruk MJ, Cunningham VJ, Brown SL, Williams CN, Armes SP. Oil-in-oil pickering emulsions stabilized by diblock copolymer nanoparticles. J Colloid Interface Sci. 2020;580:354. https://doi.org/10.1016/j.jcis.2020.07.010.

    Article  CAS  Google Scholar 

  16. Liu Q, Sun Z, Santamarina JC. Self-assembled nanoparticle-coated interfaces: capillary pressure, shell formation and buckling. J Colloid Interface Sci. 2021;581:251. https://doi.org/10.1016/j.jcis.2020.07.110.

    Article  CAS  Google Scholar 

  17. Lin Z, Zhang Z, Li Y, Deng Y. Magnetic nano-Fe3O4 stabilized pickering emulsion liquid membrane for selective extraction and separation. Chem Eng J. 2016;288:305. https://doi.org/10.1016/j.cej.2015.11.109.

    Article  CAS  Google Scholar 

  18. Gao Q, Wang C, Liu H, Chen Y, Tong Z. Dual nanocomposite multi-hollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion. Polym Chem. 2010;1:75. https://doi.org/10.1039/B9PY00255C.

    Article  CAS  Google Scholar 

  19. Zhou S, Bismarck A, Steinke JHG. Interconnected macroporous glycidyl methacrylate-grafted dextran hydrogels synthesized from hydroxyapatite nanoparticle stabilized high internal phase emulsion templates. J Mater Chem. 2012;22(36):18824. https://doi.org/10.1039/C2JM33294A.

    Article  CAS  Google Scholar 

  20. Kempin MV, Stock S, Klitzing R, Kraume M, Drews A. Influence of particle type and concentration on the ultrafiltration behavior of nanoparticle stabilized Pickering emulsions and suspensions. Sep Purif Technol. 2020;252: 117457. https://doi.org/10.1016/j.seppur.2020.117457.

    Article  CAS  Google Scholar 

  21. Wang ZG, Li N, Wang T, Ding BQ. Surface-guided chemical processes on self-assembled DNA nanostructures. Langmuir. 2018;34(49):14954. https://doi.org/10.1021/acs.langmuir.8b01060.

    Article  CAS  Google Scholar 

  22. Niehues M, Engel S, Ravoo BJ. Photo-responsive self-assembly of plasmonic magnetic Janus nanoparticles. Langmuir. 2021;37(37):11123. https://doi.org/10.1021/acs.langmuir.1c01979.

    Article  CAS  Google Scholar 

  23. Rival JV, Mymoona P, Lakshmi KM, Pradeep T, Hibu ES. Self-assembly of precision noble metal nanoclusters: hierarchical structural complexity, colloidal superstructures, and applications. Small. 2021;17(27):2005718. https://doi.org/10.1002/smll.202005718.

    Article  CAS  Google Scholar 

  24. Bao Y, Zhang Y, Liu P, Ma J, Zhang W, Liu C, Simion D. Novel fabrication of stable pickering emulsion and latex by hollow silica nanoparticles. J Colloid Interface Sci. 2019;553:83. https://doi.org/10.1016/j.jcis.2019.06.008.

    Article  CAS  Google Scholar 

  25. Venkataramani D, Tsulaia A, Amin S. Fundamentals and applications of particle stabilized emulsions in cosmetic formulations. Adv Colloid Interface Sci. 2020;283:102234. https://doi.org/10.1016/j.cis.2020.102234.

    Article  CAS  Google Scholar 

  26. Aveyard R, Binks BP, Clint JH. Emulsions stabilized solely by colloidal particles. Adv Colloid Interface Sci. 2003;100:503. https://doi.org/10.1016/S0001-8686(02)00069-6.

    Article  CAS  Google Scholar 

  27. Binks BP, Murakami R. Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater. 2006;5(11):865. https://doi.org/10.1038/nmat1757.

    Article  CAS  Google Scholar 

  28. Binks BP, Lumsdon SO. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir. 2000;16(23):8622. https://doi.org/10.1021/la000189s.

    Article  CAS  Google Scholar 

  29. Khedr A, Striolo A. Self-assembly of mono and poly-dispersed nanoparticles on emulsion droplets: antagonistic vs. synergistic effects as a function of particle size. Phys Chem Chem Phys. 2020;22(39):22662. https://doi.org/10.1039/D0CP02588G.

    Article  CAS  Google Scholar 

  30. Hils C, Schmelz J, Drechsler M, Schmalz H. Janus micelles by crystallization-driven self-assembly of an amphiphilic, double-crystalline triblock terpolymer. J Am Chem Soc. 2021;143(38):15582. https://doi.org/10.1021/jacs.1c08076.

    Article  CAS  Google Scholar 

  31. Kim BS, Taton TA. Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir. 2007;23:2198. https://doi.org/10.1021/la062692w.

    Article  CAS  Google Scholar 

  32. Eck W, Küller A, Grunze M, Völkel B, Gölzhäuser A. Freestanding nanosheets from crosslinked biphenyl self-assembled monolayers. Adv Mater. 2005;17(21):2583. https://doi.org/10.1002/adma.200500900.

    Article  CAS  Google Scholar 

  33. Nikoobakht B, El Sayed MA. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir. 2001;17:6368. https://doi.org/10.1021/la010530o.

    Article  CAS  Google Scholar 

  34. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science. 2002;298(5595):1006. https://doi.org/10.1126/science.1074868.

    Article  CAS  Google Scholar 

  35. Bai F, Wang D, Huo Z, Chen W, Liu L, Liang X, Chen C, Wang X, Peng Q, Li Y. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed. 2007;119(35):6770. https://doi.org/10.1002/ange.200701355.

    Article  Google Scholar 

  36. Liu D, Zhou F, Li C, Zhang T, Zhang H, Cai W, Li Y. Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew Chem Int Ed. 2015;54(33):9596. https://doi.org/10.1002/anie.201503384.

    Article  CAS  Google Scholar 

  37. Zhao M, Cai B, Ma Y, Cai H, Huang J, Pan X, He H, Ye Z. Self-assemble ZnMn2O4 hierarchical hollow microspheres into self-supporting architecture for enhanced biosensing performance. Biosens Bioelectron. 2014;61:443. https://doi.org/10.1016/j.bios.2014.05.051.

    Article  CAS  Google Scholar 

  38. Lee SH, Yu SH, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn TY, Kim YW, Choe H, Sung YE, Hyeon T. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium-ion batteries via geometric confinement. Nano Lett. 2013;13(9):4249. https://doi.org/10.1021/nl401952h.

    Article  CAS  Google Scholar 

  39. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3(12):891. https://doi.org/10.1038/nmat1251.

    Article  CAS  Google Scholar 

  40. Buck MR, Biacchi AJ, Schaak RE. Insights into the thermal decomposition of Co(II) oleate for the shape-controlled synthesis of wurtzite-type CoO nanocrystals. Chem Mater. 2014;26(3):1492. https://doi.org/10.1021/cm4041055.

    Article  CAS  Google Scholar 

  41. Joo J, Na HB, Yu T, Yu JH, Kim YW, Wu F, Zhang JZ, Hyeon T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J Am Chem Soc. 2003;125(36):11100. https://doi.org/10.1021/ja0357902.

    Article  CAS  Google Scholar 

  42. Walther A, Muller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev. 2013;113(7):5194. https://doi.org/10.1021/cr300089t.

    Article  CAS  Google Scholar 

  43. Chen D, Amstad E, Zhao CX, Cai L, Fan J, Chen Q, Hai M, Koehler S, Zhang H, Liang F, Yang Z, Weitz DA. Biocompatible amphiphilic hydrogel-solid dimer particles as colloidal surfactants. ACS Nano. 2017;11(12):11978. https://doi.org/10.1021/acsnano.7b03110.

    Article  CAS  Google Scholar 

  44. Liu Y, Deng K, Yang J, Wu X, Fan X, Tang M, Quan Z. Shape-directed self-assembly of nano dumbbells into superstructure polymorphs. Chem Sci. 2020;11(16):4065. https://doi.org/10.1039/D0SC00592D.

    Article  CAS  Google Scholar 

  45. Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure. Chem Rev. 2020;120(9):4111. https://doi.org/10.1021/acs.chemrev.9b00774.

    Article  CAS  Google Scholar 

  46. Tang Z, Gao L, Lin J, Cai C, Yao Y, Guerin G, Tian X, Lin S. Anchorage-dependent living supramolecular self-assembly of polymeric micelles. J Am Chem Soc. 2021;143(36):14684. https://doi.org/10.1021/jacs.1c06020.

    Article  CAS  Google Scholar 

  47. Karayianni M, Pispas S. Block copolymer solution self-assembly: recent advances, emerging trends, and applications. J Polym Sci. 2021;59(17):1874. https://doi.org/10.1002/pol.20210430.

    Article  CAS  Google Scholar 

  48. Zhu J, Hayward RC. Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew Chem Int Ed. 2008;47(11):2113. https://doi.org/10.1002/ange.200704863.

    Article  CAS  Google Scholar 

  49. Tagliabue A, Izzo L, Mella M. Out of equilibrium self-assembly of Janus nanoparticles: steering it from disordered amorphous to 2D patterned aggregates. Langmuir. 2016;32(48):12934. https://doi.org/10.1021/acs.langmuir.6b02715.

    Article  CAS  Google Scholar 

  50. Gai Y, Lin Y, Song DP, Yavitt BM, Watkins JJ. Strong ligand-block copolymer interactions for incorporation of relatively large nanoparticles in ordered composites. Macromolecules. 2016;49(9):3352. https://doi.org/10.1021/acs.macromol.5b02609.

    Article  CAS  Google Scholar 

  51. Ha JM, Lim SH, Dey J, Lee SJ, Lee MJ, Kang SH, Jin KS, Choi SM. Micelle-assisted formation of nanoparticle superlattices and thermally reversible symmetry transitions. Nano Lett. 2019;19(4):2313. https://doi.org/10.1021/acs.nanolett.8b04817.

    Article  CAS  Google Scholar 

  52. Zubarev ER, Xu J, Sayyad A, Gibson JD. Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J Am Chem Soc. 2006;128(47):15098. https://doi.org/10.1021/ja066708g.

    Article  CAS  Google Scholar 

  53. Guo Y, Saei SH, Izumi CMS, Moffitt MG. Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano. 2011;5(4):3309. https://doi.org/10.1021/nn200450c.

    Article  CAS  Google Scholar 

  54. Li X, Li H, Liu G, Deng Z, Wu S, Li P, Xu Z, Xu H, Chu PK. Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials. 2012;33(10):3013. https://doi.org/10.1016/j.biomaterials.2011.12.042.

    Article  CAS  Google Scholar 

  55. Cao W, Xia S, Jiang X, Appold M, Opel M, Plank M, Schaffrinna R, Kreuzer LP, Yin S, Gallei M, Schwartzkopf M, Roth SV, Muller Buschbaum P. Self-assembly of large magnetic nanoparticles in ultrahigh molecular weight linear diblock copolymer films. ACS Appl Mater Interfaces. 2020;12(6):7557. https://doi.org/10.1021/acsami.9b20905.

    Article  CAS  Google Scholar 

  56. Kao J, Xu T. Nanoparticle assemblies in supramolecular nanocomposite thin films: concentration dependence. J Am Chem Soc. 2015;137(19):6356. https://doi.org/10.1021/jacs.5b02494.

    Article  CAS  Google Scholar 

  57. Yuan Q, Russell TP, Wang D. Self-assembly behavior of PS-b-P2VP block copolymers and carbon quantum dots at water/oil interfaces. Macromolecules. 2020;53(24):10981. https://doi.org/10.1021/acs.macromol.0c02422.

    Article  CAS  Google Scholar 

  58. Wang M, Zhang M, Siegers C, Scholes GD, Winnik MA. Polymer vesicles as robust scaffolds for the directed assembly of highly crystalline nanocrystals. Langmuir. 2009;25(24):13703. https://doi.org/10.1021/la900523s.

    Article  CAS  Google Scholar 

  59. Hickey RJ, Meng X, Zhang P, Park SJ. Low-dimensional nanoparticle clustering in polymer micelles and their transverse relaxivity rates. ACS Nano. 2013;7(7):5824. https://doi.org/10.1021/nn400824b.

    Article  CAS  Google Scholar 

  60. Li W, Liu S, Deng R, Zhu J. Encapsulation of nanoparticles in block copolymer micellar aggregates by directed supramolecular assembly. Angew Chem Int Ed. 2011;50(26):5865. https://doi.org/10.1002/anie.201008224.

    Article  CAS  Google Scholar 

  61. Choueiri RM, Klinkova A, Therien Aubin H, Rubinstein M, Kumacheva E. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces. J Am Chem Soc. 2013;135(28):10262. https://doi.org/10.1021/ja404341r.

    Article  CAS  Google Scholar 

  62. Sanwaria S, Horechyy A, Wolf D, Chu CY, Chen HL, Formanek P, Stamm M, Srivastava R, Nandan B. Helical packing of nanoparticles confined in cylindrical domains of a self-assembled block copolymer structure. Angew Chem Int Ed. 2014;53(34):9090. https://doi.org/10.1002/anie.201403565.

    Article  CAS  Google Scholar 

  63. Singh S, Samanta P, Srivastava R, Horechyy A, Reuter U, Stamm M, Chen HL, Nandan B. Ligand displacement induced morphologies in block copolymer/quantum dot hybrids and formation of core-shell hybrid nanoobjects. Phys Chem Chem Phys. 2017;19(40):27651. https://doi.org/10.1039/C7CP04343K.

    Article  CAS  Google Scholar 

  64. Jang SG, Khan A, Hawker CJ, Kramer EJ. Morphology evolution of PS-b-P2VP diblock copolymers via supramolecular assembly of hydroxylated gold nanoparticles. Macromolecules. 2012;45(3):1553. https://doi.org/10.1021/ma202391k.

    Article  CAS  Google Scholar 

  65. Lin Y, Daga VK, Anderson ER, Gido SP, Watkins JJ. Nanoparticle-driven assembly of block copolymers: a simple route to ordered hybrid materials. J Am Chem Soc. 2011;133(17):6513. https://doi.org/10.1021/ja2003632.

    Article  CAS  Google Scholar 

  66. Krack M, Hohenberg H, Kornowski A, Lindner P, Weller H, Förster S. Nanoparticle-loaded magnetophoretic vesicles. J Am Chem Soc. 2008;130(23):7315. https://doi.org/10.1021/ja077398k.

    Article  CAS  Google Scholar 

  67. Deng R, Li H, Zhu J, Li B, Liang F, Jia F, Qu X, Yang Z. Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules. 2016;49(4):1362. https://doi.org/10.1021/acs.macromol.5b02507.

    Article  CAS  Google Scholar 

  68. Yang Z, Altantzis T, Zanaga D, Bals S, Tendeloo GV, Pileni MP. Supracrystalline colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes. J Am Chem Soc. 2016;138(10):3493. https://doi.org/10.1021/jacs.5b13235.

    Article  CAS  Google Scholar 

  69. Sanchez Iglesias A, Grzelczak M, Altantzis T, Goris B, Perez Juste J, Bals S, Van Tendeloo G, Donaldson SH Jr, Chmelka BF, Israelachvili JN, Liz Marzan LM. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano. 2012;6(12):11059. https://doi.org/10.1021/nn3047605.

    Article  CAS  Google Scholar 

  70. Zhu J, Hayward RC. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial instabilities. J Am Chem Soc. 2008;130(23):7496. https://doi.org/10.1021/ja801268e.

    Article  CAS  Google Scholar 

  71. Ren M, Hou Z, Zheng X, Xu J, Zhu J. Electrostatic control of the three-dimensional confined assembly of charged block copolymers in emulsion droplets. Macromolecules. 2021;54(12):5728. https://doi.org/10.1021/acs.macromol.1c00575.

    Article  CAS  Google Scholar 

  72. Yan N, Liu X, Zhu J, Zhu Y, Jiang W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano. 2019;13(6):6638. https://doi.org/10.1021/acsnano.9b00940.

    Article  CAS  Google Scholar 

  73. Sánchez-Iglesias A, Claes N, Solis DM, Taboada JM, Bals S, Liz Marzan LM, Grzelczak M. Reversible clustering of gold nanoparticles under confinement. Angew Chem Int Ed. 2018;57(12):3183. https://doi.org/10.1002/ange.201800736.

    Article  Google Scholar 

  74. Luo QJ, Hickey RJ, Park SJ. Controlling the location of nanoparticles in colloidal assemblies of amphiphilic polymers by tuning nanoparticle surface chemistry. ACS Macro Lett. 2013;2(2):107. https://doi.org/10.1021/mz3006044.

    Article  CAS  Google Scholar 

  75. Li W, Zhang P, Dai M, He J, Babu T, Xu YL, Deng R, Liang R, Lu MH, Nie Z, Zhu J. Ordering of gold nanorods in confined spaces by directed assembly. Macromolecules. 2013;46(6):2241. https://doi.org/10.1021/ma400115z.

    Article  CAS  Google Scholar 

  76. He L, Zhang L, Liang H. Mono- or bidisperse nanorods mixtures in diblock copolymers. Polymer. 2010;51(14):3303. https://doi.org/10.1016/j.polymer.2010.05.026.

    Article  CAS  Google Scholar 

  77. El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335(6074):1326. https://doi.org/10.1126/science.1216744.

    Article  CAS  Google Scholar 

  78. Jiang SH, Ding J, Wang RH, Chen FY, Sun J, Deng YX, Li XL. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021;40(12):3520. https://doi.org/10.1007/s12598-021-01739-8.

    Article  CAS  Google Scholar 

  79. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845. https://doi.org/10.1142/9789814287005_0033.

    Article  CAS  Google Scholar 

  80. Shen L, Yu L, Wu HB, Yu XY, Zhang X, Lou XW. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun. 2015;6:6694. https://doi.org/10.1038/ncomms7694.

    Article  CAS  Google Scholar 

  81. Yu L, Guan BY, Xiao W, Lou XW. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium-ion batteries. Adv Energy Mater. 2015;5(21):1500981. https://doi.org/10.1002/aenm.201500981.

    Article  CAS  Google Scholar 

  82. Ren Y, Hardwick LJ, Bruce PG. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew Chem Int Ed. 2010;122(14):2624. https://doi.org/10.1002/ange.200907099.

    Article  Google Scholar 

  83. Ji HX, Zhao X, Qiao ZH, Jung J, Zhu YW, Lu YL, Zhang LL, MacDonald AH, Ruoff RS. Capacitance of carbon-based electrical double-layer capacitors. Nat Commun. 2014;5:3317. https://doi.org/10.1038/ncomms4317.

    Article  CAS  Google Scholar 

  84. Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46:6816. https://doi.org/10.1039/C7CS00205J.

    Article  CAS  Google Scholar 

  85. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science. 2010;328(5977):480. https://doi.org/10.1126/science.1184126.

    Article  CAS  Google Scholar 

  86. Li H, Zhu Y, Dong S, Shen L, Chen Z, Zhang X, Yu G. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem Mater. 2016;28(16):5753. https://doi.org/10.1021/acs.chemmater.6b01988.

    Article  CAS  Google Scholar 

  87. Huang J, Xiao YB, Peng ZY, Xu YZ, Li LB, Tan LC, Yuan K, Chen YW. Co3O4 supraparticle-based bubble nanofiber and bubble nanosheet with remarkable electrochemical performance. Adv Sci. 2019;6(12):1900107. https://doi.org/10.1002/advs.201900107.

    Article  CAS  Google Scholar 

  88. Zhang JT, Hu H, Li Z, Lou XW. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew Chem Int Ed. 2016;128(12):4050. https://doi.org/10.1002/ange.201511632.

    Article  Google Scholar 

  89. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy. 2016;1:15006. https://doi.org/10.1038/nenergy.2015.6.

    Article  CAS  Google Scholar 

  90. Hu H, Han L, Yu MZ, Wang ZY, Lou XW. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci. 2016;9:107. https://doi.org/10.1039/C5EE02903A.

    Article  CAS  Google Scholar 

  91. Cai XJ, Gao W, Ma M, Wu MY, Zhang LL, Zheng YY, Chen HR, Shi JL. A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv Mater. 2015;27(41):6382. https://doi.org/10.1002/adma.201503381.

    Article  CAS  Google Scholar 

  92. Hu L, Chen QW. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale. 2014;6(3):1236. https://doi.org/10.1039/C3NR05192G.

    Article  CAS  Google Scholar 

  93. Zhang L, Wu HB, Lou XW. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J Am Chem Soc. 2013;135(29):10664. https://doi.org/10.1021/ja401727n.

    Article  CAS  Google Scholar 

  94. Liu J, Wu C, Xiao DD, Kopold P, Gu L, van Aken PA, Maier J, Yu Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small. 2016;12(17):2354. https://doi.org/10.1002/smll.201503821.

    Article  CAS  Google Scholar 

  95. Wu RB, Wang DP, Rui XH, Liu B, Zhou K, Law AWK, Yan QY, Wei J, Chen Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater. 2015;27(19):3038. https://doi.org/10.1002/adma.201500783.

    Article  CAS  Google Scholar 

  96. Chen YM, Yu L, Lou XW. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed. 2016;55(20):5990–3. https://doi.org/10.1002/anie.201600133.

    Article  CAS  Google Scholar 

  97. Han L, Yu XY, Lou XW. Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv Mater. 2016;28(23):4601. https://doi.org/10.1002/adma.201506315.

    Article  CAS  Google Scholar 

  98. Zou F, Hu XL, Li Z, Qie L, Hu CC, Zeng R, Jiang Y, Huang YH. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater. 2014;26(38):6622–8. https://doi.org/10.1002/adma.201402322.

    Article  CAS  Google Scholar 

  99. Yu L, Yang JF, Lou XW. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew Chem Int Ed. 2016;128(43):13620. https://doi.org/10.1002/ange.201606776.

    Article  Google Scholar 

  100. Guan BY, Lou XW. Complex cobalt sulfide nanobubble cages with enhanced electrochemical properties. Small Methods. 2017;1(7):1700158. https://doi.org/10.1002/smtd.201700158.

    Article  CAS  Google Scholar 

  101. Zhao R, Wang M, Zhao D, Li H, Wang C, Yin L. Molecular-level heterostructures assembled from titanium carbide MXene and Ni-Co-Al layered double hydroxide nanosheets for All-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 2018;3(1):132. https://doi.org/10.1021/acsenergylett.7b01063.

    Article  CAS  Google Scholar 

  102. Xie XQ, Zhao MQ, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang GX, Gogotsi Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513. https://doi.org/10.1016/j.nanoen.2016.06.005.

    Article  CAS  Google Scholar 

  103. Zhao RZ, Qian Z, Liu ZY, Zhao DY, Hui XB, Jiang GZ, Wang CX, Yin LW. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy. 2019;65:104037. https://doi.org/10.1016/j.nanoen.2019.104037.

    Article  CAS  Google Scholar 

  104. Zhao RZ, Di HX, Hui XB, Zhao DY, Wang RT, Wang CX, Yin LW. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ Sci. 2020;13:246. https://doi.org/10.1039/D1EE90043A.

    Article  CAS  Google Scholar 

  105. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA. 2014;111:16676. https://doi.org/10.1073/pnas.1414215111.

    Article  CAS  Google Scholar 

  106. Hui XB, Ge XL, Zhao RZ, Li ZQ, Yin LW. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv Funct Mater. 2020;30(50):2005190. https://doi.org/10.1002/adfm.202005190.

    Article  CAS  Google Scholar 

  107. Wu XM, Huang B, Wang QG, Wang Y. High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration. Chem Eng J. 2020;380:122456. https://doi.org/10.1016/j.cej.2019.122456.

    Article  CAS  Google Scholar 

  108. Ding J, Hu WB, Paek ES, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118:6457. https://doi.org/10.1021/acs.chemrev.8b00116.

    Article  CAS  Google Scholar 

  109. Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093. https://doi.org/10.1002/adma.201702093.

    Article  CAS  Google Scholar 

  110. Kang R, Zhu WQ, Li S, Zou BB, Wang LL, Li GC, Liu XH, Ng DHL, Qiu JX, Zhao Y, Qiao F, Lian JB. Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Met. 2021;40(9):2424. https://doi.org/10.1007/s12598-020-01638-4.

    Article  CAS  Google Scholar 

  111. Liu JL, Wang J, Xu CH, Jiang H, Li CZ, Zhang LL, Lin JY, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5(1):1700322. https://doi.org/10.1002/advs.201700322.

    Article  CAS  Google Scholar 

  112. Wang YG, Song YF, Xia YY. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45:5925. https://doi.org/10.1039/C5CS00580A.

    Article  CAS  Google Scholar 

  113. Hu ZL, Sayed S, Jiang T, Zhu XY, Lu C, Wang GL, Sun JY, Rashid A, Yan CL, Zhang L, Liu ZF. Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv Energy Mater. 2018;8(30):1802273. https://doi.org/10.1002/aenm.201802273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51772296, 5217020858, 51902016 and 21975015) and the Fundamental Research Funds for the Central Universities (Nos. buctrc201829 and buctrc201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian-Wu Li, Le Yu or Bao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, C., Niu, Q. et al. Self-assembly of nanoparticles at solid–liquid interface for electrochemical capacitors. Rare Met. 41, 3591–3611 (2022). https://doi.org/10.1007/s12598-022-02061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02061-7

Keywords

Navigation