Skip to main content

Advertisement

Log in

Non-noble metal-based bifunctional electrocatalysts for hydrogen production

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues. Electrochemical hydrogen production has been regarded as a viable and promising strategy. The overall water splitting is currently the predominant electrochemical hydrogen production method, which could be driven by renewable energy to achieve sustainable production. However, the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction (OER) at the anode and the expensive noble metal-based catalysts for overall water splitting, which limit the practical applications. Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost. Meanwhile, alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production. In this review, the non-noble metal-based bifunctional electrocatalysts for overall water splitting, as well as other novel energy-saving hydrogen productions have been introduced and summarized. Current challenges and outlooks are commented on at the end of the article.

Graphical abstract

摘要

氢气是清洁和可持续能源, 也是替代化石燃料从而缓解全球环境问题的最佳候选。电化学制氢被认为是一种可行且具备应用前景的重要策略。目前, 电化学催化水分解是目前最主要的电化学制氢方法, 该方法可以由可再生能源驱动从而实现可持续产氢过程。然而, 当前水分解催化制氢面临的挑战是阳极的析氧还原不仅动力学缓慢而且需要较高的过电势来驱动反应进行, 一般需要昂贵稀少的贵金属基催化剂来实现水分解制氢, 从而限制了大规模的工业应用前景。目前, 科学界已经进行了广泛的研究来开发双功能非贵金属基电催化剂用于水分解, 从而提高制氢效率并降低成本。与此同时, 作为与析氢反应耦合以实现高效节能制氢的阳极反应, 探索具有比析氧还原反应具有更快动力学和更少能量需求的替代氧化反应也成为了新的研究重点。在该综述中, 我们对于可用于整体水分解的非贵金属基双功能电催化剂进行了分类与总结, 并对其他新型可用于高效水分解制氢的替代氧化过程进行了介绍, 并在最后对当前的电化学制氢催化剂所面临的挑战和未来发展方向进行了全面的展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [8]. Copyright 2019, Elsevier B.V. b Schematic illustration of integrated HER and biomass valorization. Reproduced with permission from Ref. [11]. Copyright 2016, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [14]. Copyright 2015, the Author(s). g LSV curve of two-electrode setup with bifunctional catalysts for overall water splitting in 1 mol·L−1 NaOH and (inset) optical image of O2 and H2 bubble generated at FeOx/NF-Li anode and cathode, respectively; h chronoamperometry of water electrolysis at a cell voltage of 1.63 V for FeOx/NF-Li; i mechanism schematic illustration for OER and HER on FeOx/NF-Li. Reproduced with permission from Ref. [20]. Copyright 2020, American Chemical Society. j proposed mechanism of adaptive bifunctional amorphous CoFeO@BP electrocatalyst for overall water splitting. Reproduced with permission from Ref. [21]. Copyright 2020, Wiley–VCH GmbH

Fig. 3

Reproduced with permission from Ref. [31]. Copyright 2016, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. b Schematic illustration of a general approach for metal phosphide@C for highly efficient overall water splitting. Reproduced with permission from Ref. [42]. Copyright 2020, American Chemical Society. c Schematic illustration of synthesis of CoNx@GDY NS/NF via an in-site growth strategy. Reproduced with permission from Ref. [44]. Copyright 2019, Elsevier Ltd

Fig. 4

Reproduced with permission from Ref. [48]. Copyright 2018, Elsevier B.V. b Current density of NixB/f-MWCNT and NixB as a function of scan rate, where surface-specific double-layer capacitance (Cdl) is shown in annotation; c EIS spectra of NixB/f-MWCNT and NixB recorded under the constant potential of 1.55 V (vs. RHE); d comparison of required voltage for overall water splitting at current density of 10 mA·cm−2 for NixB/f-MWCNT and other recently reported noble metal-free bifunctional catalysts. Reproduced with permission from Ref. [51]. Copyright 2019, Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [60]. Copyright 2018, the Authors. c LSV curves for UOR (0.33 M being 0.33 mol·L−1); d Tafel slopes for UOR; e LSV curves for HER; f Tafel slopes for HER. Urea splitting performance of NO and NFO in 1 mol·L−1 KOH solution with 0.33 mol·L−1 urea: g LSV curves; h chronopotentiometry curves at the current density of 10 mA·cm−2. Reproduced with permission from Ref. [72]. Copyright 2019, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Ibrahim KB, Tsai MC, Chala SA, Berihun MK, Kahsay AW, Berhe TA, Su WN, Hwang BJ. A review of transition metal-based bifunctional oxygen electrocatalysts. J Chin Chem Soc. 2019;66(8):829.

    Article  CAS  Google Scholar 

  2. Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem. 2020;2(2):100027.

    Article  Google Scholar 

  3. Liu W, Lustig WP, Li J. Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem. 2019;1(2):100008.

    Article  Google Scholar 

  4. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544:80.

    Article  CAS  Google Scholar 

  5. Liu G, Sheng Y, Ager JW, Kraft M, Xu R. Researc advances towards large-scale solar hydrogen production from water. EnergyChem. 2019;1(2):100014.

    Article  Google Scholar 

  6. Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A. 2016;4(45):17587.

    Article  CAS  Google Scholar 

  7. Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680.

    Article  CAS  Google Scholar 

  8. Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd. 2020;819:153346.

    Article  CAS  Google Scholar 

  9. Xie L, Qu F, Liu Z, Ren X, Hao S, Ge R, Du G, Asiri AM, Sun X, Chen L. In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. J Mater Chem A. 2017;5(17):7806.

    Article  CAS  Google Scholar 

  10. Guo X, Zheng S, Luo Y, Pang H. Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem Eng Sci. 2020;401:126005.

    Article  CAS  Google Scholar 

  11. You B, Liu X, Jiang N, Sun Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc. 2016;138(41):13639.

    Article  CAS  Google Scholar 

  12. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Solar water splitting cells. Chem Rev. 2010;110(11):6446.

    Article  CAS  Google Scholar 

  13. Moni P, Hyun S, Vignesh A, Shanmugam S. Chrysanthemum flower-like NiCo2O4–nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries. Chem Commun. 2017;53(55):7836.

    Article  CAS  Google Scholar 

  14. Wang H, Lee HW, Deng Y, Lu Z, Hsu PC, Liu Y, Lin D, Cui Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun. 2015;6:7261.

    Article  CAS  Google Scholar 

  15. Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, F. G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol. 2014;9:69.

    Article  CAS  Google Scholar 

  16. Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun. 2014;5:4695.

    Article  CAS  Google Scholar 

  17. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science. 2013;340(6128):60.

    Article  CAS  Google Scholar 

  18. Elakkiya R, Ramkumar R, Maduraiveeran G. Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting. Mater Res Bull. 2019;116:98.

    Article  CAS  Google Scholar 

  19. Tahir M, Mahmood N, Zhang X, Mahmood T, Butt FK, Aslam I, Tanveer M, Idrees F, Khalid S, Shakir I, Yan Y, Zou J, Cao C, Hou Y. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015;8:3725.

    Article  CAS  Google Scholar 

  20. Zhang X, Dong CL, Wang Y, Chen J, Arul KT, Diao Z, Fu Y, Li M, Shen S. Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting. ACS Appl Mater Interfaces. 2020;12(51):57038.

    Article  CAS  Google Scholar 

  21. Li X, Xiao L, Zhou L, Xu Q, Weng J, Xu J, Liu B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew Chem Int Ed. 2020;59(47):21106.

    Article  CAS  Google Scholar 

  22. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.

    Article  CAS  Google Scholar 

  23. Li H, Tan Y, Liu P, Guo C, Luo M, Han J, Lin T, Huang F, Chen M. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv Mater. 2016;28(40):8945.

    Article  CAS  Google Scholar 

  24. Lin J, Peng Z, Wang G, Zakhidov D, Larios E, Yacaman MJ, Tour JM. Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Adv Energy Mater. 2014;4(10):1301875.

    Article  CAS  Google Scholar 

  25. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.

    Article  CAS  Google Scholar 

  26. Tang Q, Jiang D. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016;6(8):4953.

    Article  CAS  Google Scholar 

  27. Najafi L, Bellani S, Oropesa-Nuñez R, Martín-García B, Prato M, Mazánek V, Debellis D, Lauciello S, Brescia R, Sofer Z, Bonaccorso F. Niobium disulphide (NbS2)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. J Mater Chem A. 2019;7(44):25593.

  28. Wang M, Zhang L, Huang M, Zhang Q, Zhao X, He Y, Lin S, Pan J, Zhu H. One-step synthesis of a hierarchical self-supported WS2 film for efficient electrocatalytic hydrogen evolution. J Mater Chem A. 2019;7(39):22405.

    Article  CAS  Google Scholar 

  29. Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J, Chen TP. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun. 2016;7:10672.

    Article  CAS  Google Scholar 

  30. Wei S, Cui X, Xu Y, Shang B, Zhang Q, Gu L, Fan X, Zheng L, Hou C, Huang H, Wen S, Zheng W. Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 2019;4(1):368.

    Article  CAS  Google Scholar 

  31. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6702.

    Article  CAS  Google Scholar 

  32. Xie C, Yan D, Chen W, Zou Y, Chen R, Zang S, Wang Y, Yao X, Wang S. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today. 2019;31:47.

    Article  CAS  Google Scholar 

  33. Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594.

    Article  CAS  Google Scholar 

  34. Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Young DV, Lang JP. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting. Inorg Chem. 2019;58(16):11202.

    Article  CAS  Google Scholar 

  35. Gong Y, Zhi Y, Lin Y, Zhou T, Li J, Jiao F, Wang W. Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting. Dalton Trans. 2019;48(20):6718.

    Article  CAS  Google Scholar 

  36. Stern LA, Feng L, Song F, Hu X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ Sci. 2015;8(8):2347.

    Article  CAS  Google Scholar 

  37. Huang Y, Song X, Deng J, Zha C, Huang W, Wu Y, Li Y. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl Catal B. 2019;245:656.

    Article  CAS  Google Scholar 

  38. Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KCW, Yamauchi Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater. 2017;29(12):1604898.

  39. Read CG, Callejas JF, Holder CF, Schaak RE. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl Mater Interfaces. 2016;8(20):12798.

    Article  CAS  Google Scholar 

  40. Mushtaq N, Qiao C, Tabassum H, Naveed M, Tahir M, Zhu Y, Naeem M, Younasa W, Cao C. Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting. Sustain Energy Fuels. 2020;4(10):5294.

    Article  CAS  Google Scholar 

  41. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA, Chen S, Ren Z. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun. 2018;9:2551.

    Article  CAS  Google Scholar 

  42. Kang Q, Li M, Shi J, Lu Q, Gao F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl Mater Interfaces. 2020;12(17):19447.

    Article  CAS  Google Scholar 

  43. Ham DJ, Lee JS. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energy Environ Sci. 2009;2(4):873.

    CAS  Google Scholar 

  44. Fang Y, Xue Y, Hui L, Yu H, Liu Y, Xing C, Lu F, He F, Liu H, Li Y. In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting. Nano Energy. 2019;59:591.

    Article  CAS  Google Scholar 

  45. Dincă M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA. 2010;107(23):10337.

    Article  Google Scholar 

  46. Li K, Zhang J, Wu R, Yu Y, Zhang B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci. 2016;3(6):1500426.

    Article  CAS  Google Scholar 

  47. Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl Mater Interfaces. 2021;13(7):8306.

    Article  CAS  Google Scholar 

  48. Kou Z, Zhang L, Ma Y, Liu X, Zang W, Zhang J, Huang S, Du Y, Cheetham AK, Wang J. 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl Catal B. 2019;243:678.

    Article  CAS  Google Scholar 

  49. Xing J, Li Y, Guo S, Jin T, Li H, Wang Y, Jiao L. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim Acta. 2019;298:305.

    Article  CAS  Google Scholar 

  50. Xu N, Cao G, Chen Z, Kang Q, Dai H, Wang P. Cobalt nickel boride as an active electrocatalyst for water splitting. J Mater Chem A. 2017;5(24):12379.

    Article  CAS  Google Scholar 

  51. Chen X, Yu Z, Wei L, Zhou Z, Zhai S, Chen J, Wang Y, Huang Q, Karahan HE, Liao X, Chen Y. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(2):764.

    Article  CAS  Google Scholar 

  52. You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed. 2016;55(34):9913.

    Article  CAS  Google Scholar 

  53. Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1:0003.

    Article  CAS  Google Scholar 

  54. Take T, Tsurutani K, Umeda M. Hydrogen production by methanol–water solution electrolysis. J Power Sources. 2007;164(1):9.

    Article  CAS  Google Scholar 

  55. Chen YX, Lavacchi A, Miller HA, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun. 2014;5:4036.

    Article  CAS  Google Scholar 

  56. Zheng J, Chen X, Zhong X, Li S, Liu T, Zhuang G, Li X, Deng S, Mei D, Wang GJ. Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv Funct Mater. 2017;27(46):1704169.

    Article  CAS  Google Scholar 

  57. Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew Chem Int Ed. 2017;56(3):842.

    Article  CAS  Google Scholar 

  58. Liu Y, Zhang J, Li Y, Qian Q, Li Z, Zhu Y, Zhang G. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat Commun. 2020;11:1853.

    Article  CAS  Google Scholar 

  59. Wen H, Gan LY, Dai HB, Wen XP, Wu LS, Wu H, Wang P. In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl Catal B. 2019;241:292.

    Article  CAS  Google Scholar 

  60. Liu X, He J, Zhao S, Liu Y, Zhao Z, Luo J, Hu G, Sun X, Ding Y. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat Commun. 2018;9:4365.

    Article  CAS  Google Scholar 

  61. Cheung KC, Wong WL, Ma DL, Lai TS, Wong KY. Transition metal complexes as electrocatalysts—development and applications in electro-oxidation reactions. Coord Chem Rev. 2007;251(17–20):2367.

    Article  CAS  Google Scholar 

  62. Lu Z, Sun M, Xu T, Li Y, Xu W, Chang Z, Ding Y, Sun X, Jiang L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv Mater. 2015;27(14):2361.

    Article  CAS  Google Scholar 

  63. Wu LS, Wen XP, Wen H, Dai HB, Wang P. Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation. J Power Sources. 2019;412:71.

    Article  CAS  Google Scholar 

  64. Yang J, Wang X, Li B, Ma L, Shi L, Xiong Y, Xu H. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv Funct Mater. 2017;27(17):1606497.

    Article  CAS  Google Scholar 

  65. Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed. 2016;55(42):13296.

    Article  CAS  Google Scholar 

  66. Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv Mat. 2017;29(47):1704681.

    Article  CAS  Google Scholar 

  67. Yang Y, Zhang H, Lin Z-H, Liu Y, Chen J, Lin Z, Zhou YS, Wong CP, Wang ZL. A hybrid energy cell for self-powered water splitting. Energy Environ Sci. 2013;6(8):2429.

    Article  CAS  Google Scholar 

  68. Tang W, Han Y, Han CB, Gao CZ, Cao X, Wang ZL. Self-powered water splitting using flowing kinetic energy. Adv Mat. 2015;27(2):272.

    Article  CAS  Google Scholar 

  69. Boggs BK, King RL, Botte GG. Urea electrolysis: direct hydrogen production from urine. Commun Chem. 2009;32:4859.

    Article  CAS  Google Scholar 

  70. Liang Y, Liu Q, Asiri AM, Sun X. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim Acta. 2015;153:456.

    Article  CAS  Google Scholar 

  71. Zhang JY, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, Xia BY. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy. 2019;60:894.

    Article  CAS  Google Scholar 

  72. Wu F, Ou G, Yang J, Li H, Gao Y, Chen F, Wang Y, Shi Y. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Commun Chem. 2019;55(46):6555.

    Article  CAS  Google Scholar 

  73. Li Q, Li X, Gu J, Li Y, Tian Z, Pang H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021;14:1405.

    Article  CAS  Google Scholar 

  74. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block. Chem Rev. 2011;111(2):397.

    Article  CAS  Google Scholar 

  75. Zhang Z, Deng K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal. 2015;5(11):6529.

    Article  CAS  Google Scholar 

  76. Deng X, Kang X, Li M, Xiang K, Wang C, Guo Z, Zhang J, Fu XZ, Luo JL. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core–shell nanoarray electrocatalysts. J Mater Chem A. 2020;8(3):1138.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. NSFC 21771156) and the NSFC/RGC Joint Research Scheme Project (N_PolyU502/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Long Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Sun, MZ. & Huang, BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 41, 2169–2183 (2022). https://doi.org/10.1007/s12598-021-01914-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01914-x

Keywords

Navigation