Skip to main content

Advertisement

Log in

High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ultrafast charge/discharge process and ultrahigh power density enable dielectrics essential components in modern electrical and electronic devices, especially in pulse power systems. However, in recent years, the energy storage performances of present dielectrics are increasingly unable to satisfy the growing demand for miniaturization and integration, which stimulates further researches on dielectrics with higher energy density and efficiency. Among various inorganic dielectrics, perovskite relaxor ferroelectrics are recognized as promising candidates for energy storage applications, with high permittivity and relatively high efficiency. Here, we focus on recent progress and achievements on optimizing perovskite relaxor ferroelectrics toward better energy storage capability through hierarchical design. The principles and key parameters of dielectric energy storage, together with the definition of majority types of dielectrics, are introduced at first. Strategies within various scales include domain, grain size, orientation, and composite engineering are summarized. The existing challenges are presented and future prospects are proposed in the end, with the background of both academic explorations and industrial applications.

Graphical abstract

摘要

超快充电/放电速度和超高功率密度使电介质元件成为现代电子和电气设备中不可或缺的组件, 尤其是在脉冲应用等方面。在各种无机电介质中, 钙钛矿弛豫铁电体所具有的高介电常数和相对较高的效率使其在储能应用方面有广阔的前景。在这篇文章里, 我们收集并总结了通过分层设计优化钙钛矿弛豫铁电体以提高储能性能的最新进展和成就。首先介绍了电介质储能的原理和关键参数, 以及大多数电介质类型的定义。除此之外, 总结了各种尺度内的策略, 包括畴工程、晶粒尺寸、取向设计, 以及复合设计。最后, 在学术探索和工业应用的双重背景下, 提出了介电储能陶瓷所面临的挑战并提出了对未来的展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Reproduced with permission from Ref. [41]. Copyright 2021, Elsevier B.V. Diagrams of orientation control. Reproduced with permission from Ref. [5]. Copyright 2020 Springer Nature. Diagram of core–shell. Reproduced with permission from Ref. [62]. Copyright 2020, Royal Society of Chemistry

Fig.3
Fig.4

Reproduced with permission from Ref. [34]. Copyright 2019, Royal Society of Chemistry. d Schematic diagram of strategy to simultaneously achieve high Wrec and η by driving Tm to RT so that small-sized PNRs can transform to large-sized PNRs and grain size decreased. Reproduced with permission from Ref. [33]. Copyright 2020, Elsevier B.V

Fig.5

Reproduced with permission from Ref. [22]. Copyright 2019, The American Association for the Advancement of Science

Fig.6

Reproduced with permission from Ref. [43]. Copyright 2020, Elsevier B.V. b Modeled breakdown path of different grain size: i 50 nm, ii 75 nm, iii 100 nm, and iv 125 nm. Reproduced with permission from Ref. [44]. Copyright 2018, The American Ceramic Society

Fig.7

Reproduced with permission from Ref. [45]. Copyright 2020, Wiley–VCH GmbH

Fig.8

Reproduced with permission from Ref. [41]. Copyright 2021, Elsevier B.V

Fig.9

Reproduced with permission from Ref. [52]. Copyright 2020, Wiley–VCH GmbH. b Schematic illustration of crystal structure of Ba6Ti17O40, <111>-oriented BaTiO3 plates, <111>-oriented SrTiO3 plates; c local displacements (along direction of applied electric field), local distribution of von Mises stresses and local elastic energy densities for <100>-, <110>- and <111>-oriented perovskite samples; d SEM image of fracture surface (cross section) of <111>-textured NBT-SBT MLCC; e unipolar PE curves for both ceramics measured at 10 Hz; f Weibull distribution of breakdown electric field; g, h recoverable energy density and efficiency as a function of electric field calculated using PE loops for nontextured and <111>-textured NBT-SBT multilayer ceramics. Reproduced with permission from Ref. [5]. Copyright 2020, Springer Nature

Fig.10

Reproduced with permission from Ref. [56]. Copyright 2018, Royal Society of Chemistry. c TEM images and EDS spectrum of α-Fe2O3 nanoparticles-PZO thin films. Reproduced with permission from Ref. [71]. Copyright 2014, AIP Publishing. d PE hysteresis loops for different architecture of capacitors. Reproduced with permission from Ref. [63]. Copyright 2021, Royal Society of Chemistry. e PE hysteresis loops and various artificial structure design of PLZT thick films. Reproduced with permission from Ref. [72]. Copyright 2013, AIP Publishing

Similar content being viewed by others

References

  1. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309.

    Article  CAS  Google Scholar 

  2. Guo Q, Zeng W, Liu SL, Li YQ, Xu JY, Wang JX, Wang Y. Recent developments on anode materials for magnesium-ion batteries: a review. Rare Met. 2021;40(2):290.

    Article  CAS  Google Scholar 

  3. Xu XT, Tang J, Qian HY, Hou SJ, Bando Y, Hossain MSA, Pan LK, Yamauchi Y. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces. 2017;9(44):38737.

    Article  CAS  Google Scholar 

  4. Wulan Septiani NL, Kaneti YV, Fathoni KB, Wang J, Ide Y, Yuliarto B, Nugraha Dipojono HK, Nanjundan AK, Golberg D, Bando Y, Yamauchi Y. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy. 2020;67:104270.

    Article  CAS  Google Scholar 

  5. Li JL, Shen ZH, Chen XH, Yang S, Zhou WL, Wang MW, Wang LH, Kou QW, Liu YC, Li Q, Xu Z, Chang YF, Zhang SJ, Li F. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater. 2020;19(9):999.

    Article  CAS  Google Scholar 

  6. Qi H, Xie AW, Tian A, Zuo RZ. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater. 2019;10(6):1903338.

    Article  Google Scholar 

  7. Yan F, Shi YJ, Zhou XF, Zhu K, Shen B, Zhai JW. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chem Eng J. 2021;417:127945.

    Article  CAS  Google Scholar 

  8. Liu G, Tang MY, Hou X, Guo B, Lv JW, Dong J, Wang Y, Li Q, Yu K, Yan Y, Jin L. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem Eng J. 2021;412:127555.

    Article  CAS  Google Scholar 

  9. Xie AW, Zuo RZ, Qiao ZL, Fu ZQ, Hu TF, Fei LF. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv Energy Mater. 2021;11(28):2101378.

    Article  CAS  Google Scholar 

  10. Khanchaitit P, Han K, Gadinski MR, Li Q, Wang Q. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat Commun. 2013;4(1):2845.

    Article  Google Scholar 

  11. Zhu Y, Ma FW, Ma CH, Han HJ, Sun RY, Peng H, Xie MR. Enhanced dielectric and electrical energy storage capability of polymers with combined azobenzene and triphenylamine side groups by ring-opening metathesis polymerization. Polymer. 2019;184:121886.

    Article  CAS  Google Scholar 

  12. Yuan C, Zhou Y, Zhu YJ, Liang JJ, Wang SJ, Peng SM, Li YS, Cheng S, Yang MC, Hu J, Zhang B, Zeng R, He JL, Li Q. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat Commun. 2020;11(1):3919.

    Article  CAS  Google Scholar 

  13. Chen J, Wang YF, Yuan QB, Xu XW, Niu YJ, Wang Q, Wang H. Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy. 2018;54:288.

    Article  CAS  Google Scholar 

  14. Liu SH, Xue SX, Xiu SM, Shen B, Zhai JW. Surface-modified Ba(Zr0.3Ti07)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Sci Rep. 2016;6(1):26198.

    Article  CAS  Google Scholar 

  15. Li Q, Han K, Gadinski MR, Zhang GZ, Wang Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater. 2014;26(36):6244.

    Article  CAS  Google Scholar 

  16. Luo SB, Shen YB, Yu SH, Wan YJ, Liao WH, Sun R, Wong CP. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ Sci. 2017;10(1):137.

    Article  CAS  Google Scholar 

  17. Chen YQ, Lin BQ, Zhang XQ, Wang JC, Lai CW, Sun Y, Liu YR, Yang H. Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J Mater Chem A. 2014;2(34):14118.

    Article  CAS  Google Scholar 

  18. Qi JL, Cao MH, Chen YY, Hao H, Yao ZH, Liu HX. Origin of high dielectric permittivity and low dielectric loss of Sr0.985Ce0.01TiO3 ceramics under different sintering atmospheres. J Alloys Compd. 2019;782:51.

    Article  CAS  Google Scholar 

  19. Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater. 2018;28(42):1803665.

    Article  Google Scholar 

  20. Liu Z, Lu T, Ye JM, Wang GS, Dong XL, Withers R, Liu Y. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol. 2018;3(9):1800111.

    Article  Google Scholar 

  21. Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, Xu Z, Huang QW, Liao XZ, Chen LQ, Shrout TR, Zhang SJ. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater. 2018;17(4):349.

    Article  CAS  Google Scholar 

  22. Pan H, Li F, Liu Y, Zhang QH, Wang M, Lan S, Zheng YP, Ma J, Gu L, Shen Y, Yu P, Zhang SJ, Chen LQ, Lin YH, Nan CW. Ultrahigh energy density lead-free dielectric films via polymorphic nanodomain design. Science. 2019;365(6453):578.

    Article  CAS  Google Scholar 

  23. Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76(1):241.

    Article  CAS  Google Scholar 

  24. Xie L, Li YL, Yu R, Cheng ZY, Wei XY, Yao X, Jia CL, Urban K, Bokov AA, Ye ZG, Zhu J. Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-xSnx)O3 system at high temperature. Phys Rev B. 2012;85(1):014118.

    Article  Google Scholar 

  25. Takenaka H, Grinberg I, Liu S, Rappe AM. Slush-like polar structures in single-crystal relaxors. Nature. 2017;546(7658):391.

    Article  CAS  Google Scholar 

  26. Yang LT, Kong X, Li F, Hao H, Cheng ZX, Liu HX, Li JF, Zhang SJ. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci. 2019;102:72.

    Article  CAS  Google Scholar 

  27. Wang G, Lu ZL, Li Y, Li LH, Ji HF, Feteira A, Zhou D, Wang DW, Zhang SJ, Reaney IM. Electroceramics for high energy density capacitors: current status and future perspectives. Chem Rev. 2021;121(10):6124.

    Article  CAS  Google Scholar 

  28. Fröhlich H. On the theory of dielectric breakdown in solids. Proc R Soc Lond A. 1947;188(1015):521.

    Article  Google Scholar 

  29. Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin LW. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science. 2020;369(6499):81.

    Article  CAS  Google Scholar 

  30. Ma BH, Hu ZQ, Koritala RE, Lee TH, Dorris SE, Balachandran U. PLZT film capacitors for power electronics and energy storage applications. J Mater Sci-Mater Electron. 2015;26(12):9279.

    Article  CAS  Google Scholar 

  31. Pan H, Ma J, Ma J, Zhang QH, Liu XZ, Guan B, Gu L, Zhang X, Zhang YJ, Li LL, Shen Y, Lin YH, Nan CW. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun. 2018;9(1):1813.

    Article  Google Scholar 

  32. Liang ZS, Ma CR, Shen LK, Lu L, Lu XL, Lou XJ, Liu M, Jia CL. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy. 2019;57:519.

    Article  CAS  Google Scholar 

  33. Dong XY, Li X, Chen XL, Wu JG, Zhou HF. Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem Eng J. 2021;409:128231.

    Article  CAS  Google Scholar 

  34. Yang ZT, Du HL, Jin L, Hu QY, Wang H, Li YF, Wang JF, Gao F, Qu SB. Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range. J Mater Chem A. 2019;7(48):27256.

    Article  CAS  Google Scholar 

  35. Qu N, Du HL, Hao XH. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J Mater Chem C. 2019;7(26):7993.

    Article  CAS  Google Scholar 

  36. Jiang J, Meng XJ, Li L, Zhang J, Guo S, Wang J, Hao XH, Zhu HG, Zhang ST. Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution. Chem Eng J. 2021;422:130130.

    Article  CAS  Google Scholar 

  37. Pan H, Zeng Y, Shen Y, Lin YH, Ma J, Li LL, Nan CW. BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A. 2017;5(12):5920.

    Article  CAS  Google Scholar 

  38. T. Tunkasiri GR. Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett. 1996;15(20):1767.

    Article  CAS  Google Scholar 

  39. Yang ZT, Gao F, Du HL, Jin L, Yan LL, Hu QY, Yu Y, Qu SB, Wei XY, Xu Z, Wang YJ. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy. 2019;58:768.

    Article  CAS  Google Scholar 

  40. Luo CY, Feng Q, Luo NN, Yuan CL, Zhou CR, Wei YZ, Fujita T, Xu JW, Chen GH. Effect of Ca2+/Hf4+ modification at A/B sites on energy-storage density of Bi0.47Na0.47Ba0.06TiO3 ceramics. Chem Eng J. 2021;420:129861.

    Article  CAS  Google Scholar 

  41. Zhao YY, Ouyang J, Wang K, Yuan ML, Gao YQ, Su Y, Cheng HB, Liu ML, Yang Q, Pan W. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Mater. 2021;39:81.

    Article  CAS  Google Scholar 

  42. Wang XZ, Huan Y, Zhao PY, Liu XM, Wei T, Zhang QW, Wang XH. Optimizing the grain size and grain boundary morphology of (K, Na) NbO3 based ceramics: paving the way for ultrahigh energy storage capacitors. J Materiomics. 2021;7(4):780.

    Article  Google Scholar 

  43. Ren XD, Jin L, Peng ZH, Chen B, Qiao XS, Wu D, Li GR, Du HL, Yang ZP, Chao XL. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem Eng J. 2020;390:124566.

    Article  CAS  Google Scholar 

  44. Cai ZM, Wang XH, Hong W, Luo BC, Zhao QC, Li LT. Grain-size–dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc. 2018;101(12):5487.

    Article  CAS  Google Scholar 

  45. Wang K, Ouyang J, Wuttig M, Zhao YY, Cheng HB, Zhang Y, Su RX, Yan J, Zhong XL, Zeng F. Superparaelectric (Ba0.95, Sr0.05)(Zr0.2, Ti0.8)O3 ultracapacitors. Adv Energy Mater. 2020;10(37):2001778.

    Article  CAS  Google Scholar 

  46. Wang K, Zhang Y, Wang SX, Zhao YY, Cheng HB, Li Q, Zhong XL, Ouyang J. High energy performance ferroelectric (Ba, Sr)(Zr, Ti)O3 Film Capacitors Integrated on Si at 400 °C. ACS Appl Mater Interfaces. 2021;13(19):22717.

    Article  CAS  Google Scholar 

  47. Yu Q, Li JF, Sun W, Zhu FY, Liu YM, Chen YN, Wang ZJ, Li JY. Orientation-dependent piezoelectricity and domain characteristics of tetragonal Pb(Zr0.3, Ti0.7)0.98Nb0.02O3 thin films on Nb-doped SrTiO3 substrates. Appl Phys Lett. 2014;104(1):012908.

    Article  Google Scholar 

  48. Li P, Zhai JW, Shen B, Zhang SJ, Li XL, Zhu FY, Zhang XM. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv Mater. 2018;30(8):1705171.

    Article  Google Scholar 

  49. Xie ZK, Yue ZX, Peng B, Zhang J, Zhao C, Zhang XH, Ruehl G, Li LT. Large enhancement of the recoverable energy storage density and piezoelectric response in relaxor-ferroelectric capacitors by utilizing the seeding layers engineering. Appl Phys Lett. 2015;106(20):202901.

    Article  Google Scholar 

  50. Nguyen MD, Houwman EP, Rijnders G. Energy storage performance and electric breakdown field of thin relaxor ferroelectric PLZT films using microstructure and growth orientation control. J Mater Chem C. 2018;122(27):15171.

    CAS  Google Scholar 

  51. Carr JM, Mackey M, Flandin L, Schuele D, Zhu L, Baer E. Effect of biaxial orientation on dielectric and breakdown properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-tetrafluoroethylene) multilayer films. J Polym SciPt B-Polym Phys. 2013;51(11):882.

    Article  CAS  Google Scholar 

  52. Bai WF, Zhao XY, Ding YQ, Wang LJ, Zheng P, Hao JG, Zhai JW. Giant field-induced strain with low hysteresis and boosted energy storage performance under low electric field in (Bi0.5Na0.5)TiO3-based grain orientation-controlled ceramics. Adv Electron Mater. 2020;6(9):2000332.

    Article  CAS  Google Scholar 

  53. Zhang X, Shen Y, Zhang QH, Gu L, Hu YH, Du JW, Lin YH, Nan CW. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater. 2015;27(5):819.

    Article  CAS  Google Scholar 

  54. Wang YF, Cui J, Yuan QB, Niu YJ, Bai YY, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater. 2015;27(42):6658.

    Article  CAS  Google Scholar 

  55. Huang XY, Jiang PK. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater. 2015;27(3):546.

    Article  CAS  Google Scholar 

  56. Qi JL, Cao MH, Heath JP, Dean JS, Hao H, Yao ZH, Yu ZY, Liu HX. Improved breakdown strength and energy storage density of a Ce doped strontium titanate core by silica shell coating. J Mater Chem C. 2018;6(34):9130.

    Article  CAS  Google Scholar 

  57. Qi JL, Liu Q, Cao MH, Zhao Y, Hao H, Yao ZH, Liu HX. A family of functional oxides of titanosilicates: A2TiSi2O8 (A = Ba, Sr) with temperature insensitive ultrahigh breakdown strength. J Eur Ceram Soc. 2020;40(8):3027.

    Article  CAS  Google Scholar 

  58. Huang YH, Wu YJ, Liu B, Yang TN, Wang JJ, Li J, Chen LQ, Chen XM. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering. J Mater Chem A. 2018;6(10):4477.

    Article  CAS  Google Scholar 

  59. Wang HY, Cao MH, Liu M, Hao H, Yao ZH, Liu HX. Enhanced energy storage properties of fine-crystalline Ba0.4Sr0.6TiO3 ceramics by coating powders with B2O3-Al2O3-SiO2. J Alloy Compd. 2020;826:153891.

    Article  CAS  Google Scholar 

  60. Xie JY, Yao MW, Gao WB, Su Z, Yao X. Ultrahigh breakdown strength and energy density in PLZST@PBSAZM antiferroelectric ceramics based on core-shell structure. J Eur Ceram Soc. 2019;39(4):1050.

    Article  CAS  Google Scholar 

  61. Wang HY, Cao MH, Huang R, Tao C, Pan WG, Hao H, Yao ZH, Liu HX. Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. J Eur Ceram Soc. 2021;41(7):4129.

    Article  CAS  Google Scholar 

  62. Jin Q, Zhao LL, Cui B, Wang J, Ma HJ, Zhang R, Liu Y, Zhang XT. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core–shell structural design. J Mater Chem C. 2020;8(15):5248.

    Article  CAS  Google Scholar 

  63. Thakre A, Kumar A, Lee MY, Patil DR, Kim SH, Ryu J. Artificially induced normal ferroelectric behaviour in aerosol deposited relaxor 65PMN-35PT thick films by interface engineering. J Mater Chem C. 2021;9(10):3403.

    Article  CAS  Google Scholar 

  64. Das D, Gaddam V, Jeon S. Insertion of dielectric interlayer: a new approach to enhance energy storage in HfxZr1xO2 capacitors. IEEE Electron Device Lett. 2021;42(3):331.

    Article  CAS  Google Scholar 

  65. Diao CL, Liu HX, Lou GH, Zheng HW, Yao ZH, Hao H, Cao MH. Structure and electric properties of sandwich-structured SrTiO3/BiFeO3 thin films for energy storage applications. J Alloys Compd. 2019;781:378.

    Article  CAS  Google Scholar 

  66. Zhang YL, Li WL, Xu SC, Wang ZY, Zhao Y, Li J, Fei WD. Interlayer coupling to enhance the energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 multilayer films with the electric field amplifying effect. J Mater Chem A. 2018;6(47):24550.

    Article  CAS  Google Scholar 

  67. Yan F, Bai HR, Zhou XF, Ge GL, Li GH, Shen B, Zhai JW. Realizing superior energy storage properties in lead-free ceramics via a macro-structure design strategy. J Mater Chem A. 2020;8(23):11656.

    Article  CAS  Google Scholar 

  68. Diao CL, Liu HX, Hao H, Cao MH, Yao ZH, Zheng HW. Dielectric, ferroelectric properties and photoconductivity effect of sol-gel grown SrTiO3/BaTiO3 thin film heterostructure. Ceram Int. 2018;44(11):12157.

    Article  CAS  Google Scholar 

  69. Sun ZX, Ma CR, Liu M, Cui J, Lu L, Lu JB, Lou XJ, Jin L, Wang H, Jia CL. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater. 2017;29(5):1604427.

    Article  Google Scholar 

  70. Zhang C, Xiao WR, Zeng FF, Su D, Du K, Qiu SY, Fan GF, Lei W, Zhang HB, Jiang SL, Wu JM, Zhang GZ. Superior energy-storage performance in 0.85Bi0.5Na0.5TiO3–0.15NaNbO3 lead-free ferroelectric ceramics via composition and microstructure engineering. J Mater Chem A. 2021;9(16):10088.

    Article  CAS  Google Scholar 

  71. Sa TL, Cao ZP, Wang YJ, Zhu HB. Enhancement of charge and energy storage in PbZrO3 thin films by local field engineering. Appl Phys Lett. 2014;105(4):043902.

    Article  Google Scholar 

  72. Zhang LW, Hao XH, Yang JC, An SL, Song B. Large enhancement of energy-storage properties of compositional graded (Pb1xLax)(Zr0.65Ti0.35)O3 relaxor ferroelectric thick films. Appl Phys Lett. 2013;103(11):113902.

    Article  Google Scholar 

  73. Shen Y, Zhang X, Li M, Lin YH, Nan CW. Polymer nanocomposite dielectrics for electrical energy storage. Natl Sci Rev. 2017;4(1):23.

    Article  CAS  Google Scholar 

  74. Zhao PY, Cai ZM, Chen LL, Wu LW, Huan Y, Guo LM, Li LT, Wang H, Wang XH. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci. 2020;13(12):4882.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No.51788104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Lin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MH., Qi, JL., Liu, YQ. et al. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization. Rare Met. 41, 730–744 (2022). https://doi.org/10.1007/s12598-021-01869-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01869-z

Keywords

Navigation