Skip to main content

Advertisement

Log in

PLZT film capacitors for power electronics and energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ceramic film capacitors with high dielectric constant and high breakdown strength hold special promise for applications demanding high power density. By means of chemical solution deposition, we deposited ≈2-μm-thick films of lanthanum-doped lead zirconate titanate (PLZT) on LaNiO3-buffered Ni (LNO/Ni) foils and platinized silicon (PtSi) substrates. The dielectric properties and energy storage performance of the resulting samples were determined under a high level of applied electric field. X-ray diffraction stress analysis revealed that PLZT on LNO/Ni bears a compressive stress of ≈370 MPa while PLZT on PtSi endures a tensile stress of ≈250 MPa. Compressive stress was found to lead to heightened polarization, improved tunability, increased irreversible domain wall motion, and enhanced breakdown strength for PLZT deposited on the LNO/Ni as compared with the PtSi substrate. We observed a tunability of ≈55 and ≈40 % at room temperature under 100 kV/cm applied field, remanent polarization of ≈23.5 and ≈7.4 µC/cm2, coercive electric field of ≈25.6 and ≈21.1 kV/cm, and dielectric breakdown strength of ≈2.6 and ≈1.5 MV/cm for PLZT deposited on LNO/Ni foils and PtSi substrates, respectively. A high recoverable energy density of ≈85 J/cm3 and energy conversion efficiency of ≈65 % were measured on the PLZT film grown on LNO/Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.-B. Eom, S. Trolier-McKinstry, Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012)

    Article  Google Scholar 

  2. S. Kwon, W. Hackenberger, E. Alberta, E. Furman, M. Lanagan, Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics. IEEE Electr. Insul. Mag. 27, 43 (2011)

    Article  Google Scholar 

  3. P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.-J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry, High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581–2592 (2009)

    Article  Google Scholar 

  4. X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  5. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  Google Scholar 

  6. Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014)

    Article  Google Scholar 

  7. S.A. Rogers, FY13 annual progress report for the advanced power electronics and electric motors program, US DOE/EE-1040, Washington, DC (2013)

  8. B. Rangarajan, B. Jones, T. Shrout, M. Lanaga, Barium/lead-rich high permittivity glass-ceramics for capacitor applications. J. Am. Ceram. Soc. 90, 784–788 (2007)

    Article  Google Scholar 

  9. K. Yao, S. Chen, M. Rahimabady, M.S. Mirshekarloo, S. Yu, F.E.H. Tay, T. Sritharan, L. Lu, Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968–1974 (2011)

    Article  Google Scholar 

  10. B. Ma, D.K. Kwon, M. Narayanan, U. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993–2996 (2009)

    Article  Google Scholar 

  11. X. Hao, Y. Wang, J. Yang, S. An, J. Xu, High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films. J. Appl. Phys. 112, 114111 (2012)

    Article  Google Scholar 

  12. B. Ma, M. Narayanan, U. Balachandran, Dielectric strength and reliability of ferroelectric PLZT films deposited on nickel substrates. Mater. Lett. 63, 1353–1356 (2009)

    Article  Google Scholar 

  13. K.D. Budd, S.K. Dey, D.A. Payne, Sol–gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Proc. Br. Ceram. Soc. 36, 107–121 (1985)

    Google Scholar 

  14. B. Ma, D.K. Kwon, M. Narayanan, U. Balachandran, Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils. J. Electroceram. 22, 383–389 (2009)

    Article  Google Scholar 

  15. B. Ma, D.K. Kwon, M. Narayanan, U. Balachandran, Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils. J. Phys. D Appl. Phys. 41, 205003 (2008)

    Article  Google Scholar 

  16. C.K. Kwok, S.B. Desu, Pyrochlore to perovskite phase transformation in sol-gel derived lead-zirconate-titanate thin films. Appl. Phys. Lett. 60, 1430–1432 (1992)

    Article  Google Scholar 

  17. Q. Zou, H.E. Ruda, B.G. Yacobi, Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers. Appl. Phys. Lett. 78, 1282–1284 (2001)

    Article  Google Scholar 

  18. B. Ma, S. Liu, S. Tong, M. Narayanan, U. Balachandran, Enhanced dielectric properties of Pb0.92La0.08Zr0.52Ti0.48O3 films with compressive stress. J. Appl. Phys. 112, 114117 (2012)

    Article  Google Scholar 

  19. P.S. Prevéy, X-ray Diffraction Residual Stress Techniques, in Metals Park, ed. by Metals Handbook (Am. Soc. Met., OH, 1986), pp. 380–392

    Google Scholar 

  20. R.J. Ong, D.A. Payne, N.R. Sottos, Processing effects for integrated PZT: residual stress, thickness, and dielectric properties. J. Am. Ceram. Soc. 88, 2839–2847 (2005)

    Article  Google Scholar 

  21. G.A.C.M. Spierings, G.J.M. Dormans, W.G.J. Moors, M.J.E. Ulenaers, P.K. Larsen, Stress in Pt/Pb(Zr, Ti)O3/Pt thin-film stacks for integrated ferroelectric capacitors. J. Appl. Phys. 78, 1926–1933 (1995)

    Article  Google Scholar 

  22. J. Lee, C. Park, M. Kim, H. Kim, Effect of residual stress on the electrical properties of PZT films. J. Am. Ceram. Soc. 90, 1077–1080 (2007)

    Article  Google Scholar 

  23. D. Damjanovic, M. Demartin, The Rayleigh law in piezoelectric ceramics. J. Phys. D Appl. Phys. 29, 2057–2060 (1996)

    Article  Google Scholar 

  24. N. Bassiri-Gharb, I. Fujii, E. Hong, S. Trolier-McKinstry, D.V. Taylor, D. Damjanovic, Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 49–67 (2007)

    Article  Google Scholar 

  25. Y. Bastani, T. Schmitz-Kempen, A. Roelofs, N. Bassiri-Gharb, Critical thickness for extrinsic contributions to the dielectric and piezoelectric response in lead zirconate titanate ultrathin fil. J. Appl. Phys. 109, 014115 (2011)

    Article  Google Scholar 

  26. P. Bintachitt, S. Jesse, D. Damjanovic, Y. Han, I.M. Reaney, S. Trolier-McKinstry, S.V. Kalinin, Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Natl. Acad. Sci. USA 107, 7219–7224 (2010)

    Article  Google Scholar 

  27. W. Weibull, A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    Google Scholar 

  28. L.A. Dissado, Theoretical basis for the statistics of dielectric breakdown. J. Phys. D Appl. Phys. 23, 1582–1591 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the U.S. Department of Energy, Vehicle Technologies Program, under Contract No. DE-AC02-06CH11357. Microstructure analysis was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beihai Ma.

Additional information

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Hu, Z., Koritala, R.E. et al. PLZT film capacitors for power electronics and energy storage applications. J Mater Sci: Mater Electron 26, 9279–9287 (2015). https://doi.org/10.1007/s10854-015-3025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3025-0

Keywords

Navigation